Aircraft Morphing program

In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest-payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

[1]  M A Scott,et al.  Time Varying Compensator Design for Reconfigurable Structures Using Non-Collocated Feedback , 1996 .

[2]  Garnett C. Horner,et al.  Integration issues for high-strain actuation applications , 1998, Smart Structures.

[3]  W. Belvin,et al.  Helicopter dynamic stall suppression using piezoelectric active fiber composite rotor blades , 1998 .

[4]  I. Wygnanski,et al.  Delay of Airfoil Stall by Periodic Excitation , 1996 .

[5]  Chih-Ming Ho,et al.  REVIEW: MEMS and Its Applications for Flow Control , 1996 .

[6]  Richard W. Longman,et al.  Recursive form of the eigensystem realization algorithm for system identification , 1989 .

[7]  Jer-Nan Juang,et al.  Broadband Noise Control Using Predictive Techniques , 1997 .

[8]  Michael G. Gilbert,et al.  Active vibration damping of the Space Shuttle Remote Manipulator System , 1991 .

[9]  Michael G. Gilbert,et al.  Actuator concepts and mechatronics , 1998, Smart Structures.

[10]  Hussaini M. Yousuff,et al.  A Self-Contained, Automated Methodology for Optimal Flow Control , 1997 .

[11]  Ruben Rathnasingham,et al.  Characteristics of resonant actuators for flow control , 1996 .

[12]  Manipulation of a jet in a cross flow , 1998 .

[13]  Anna-Maria Rivas McGowan,et al.  Results of wind-tunnel testing from the piezoelectric aerostatic response tailoring investigation , 1996 .

[14]  Gibbs,et al.  Radiation modal expansion: application to active structural acoustic control , 2000, The Journal of the Acoustical Society of America.

[15]  Chih-Ming Ho,et al.  A surface-micromachined shear stress imager , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[16]  M. Froggatt,et al.  Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber. , 1996, Applied optics.

[17]  C Otto John,et al.  A Surrogate Approach to the Experimental Optimization of Multielement Airfoils , 1996 .

[18]  Ian A. Waitz,et al.  PRELIMINARY ASSESSMENT OF WAKE MANAGEMENT STRATEGIES FOR REDUCTION OF TURBOMACHINERY FAN NOISE , 1996 .

[19]  R. Bryant,et al.  Thin-layer composite unimorph ferroelectric driver and sensor properties , 1998 .

[20]  Richard W. Longman,et al.  Improvement of observer/Kalman filter identification (OKID) by residual whitening , 1992 .

[21]  L Padula Sharon,et al.  Optimal Sensor/Actuator Locations for Active Structural Acoustic Control , 1998 .

[22]  Rustum Roy,et al.  Materials Research Society , 1984 .

[23]  Harry Robertshaw,et al.  Experimental studies of structural acoustic control for a shape memory alloy composite beam , 1990 .

[24]  Y. Tai,et al.  Surface micromachined thermal shear stress sensor , 1994 .

[25]  I. Wygnanski,et al.  Oscillatory Blowing: A Tool to Delay Boundary-Layer Separation , 1993 .

[26]  W Moses Robert,et al.  Controlled Aeroelastic Response and Airfoil Shaping Using Adaptive Materials and Integrated Systems , 1996 .

[27]  Richard D. James,et al.  Turbulent jets induced by surface actuators , 1993 .

[28]  Raymond C. Montgomery,et al.  Subsonic maneuvering effectiveness of high-performance aircraft that employ quasi-static shape change devices , 1998, Smart Structures.

[29]  Kenji Uchino,et al.  Materials Research Society Symposium Proceedings Volume 604. Materials for Smart Systems III, Held November 30-December 2, 1999, Boston, Massachusetts, USA , 1999 .

[30]  Matthew W. Hooker,et al.  Properties and performance of RAINBOW piezoelectric actuator stacks , 1997, Smart Structures.

[31]  R. Burdisso,et al.  Experiments on the active control of inlet noise from a turbofan jet engine using multiple circumferential control arrays , 1996 .

[32]  Ari Glezer,et al.  Direct high-frequency excitation of turbulence in free shear flows , 1996 .

[33]  Matthew L. Wilbur,et al.  Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center , 1998 .

[34]  Juang Jer-Nan,et al.  Deadbeat Predictive Controllers , 1997 .

[35]  Chung-Sheng Yao,et al.  Scaling of an oscillatory flow-control actuator , 1998 .

[36]  Andrew S. Bicos,et al.  Structural vibration damping experiments using improved piezoelectric shunts , 1997, Smart Structures.

[37]  Israel J Wygnanski,et al.  Boundary layer and flow control by periodic addition of momentum , 1997 .

[38]  A. Seifert,et al.  Oscillatory Control of Separation at High Reynolds Numbers , 1999 .

[39]  J S Vipperman,et al.  Multivariable feedback active structural acoustic control using adaptive piezoelectric sensoriactuators. , 1999, The Journal of the Acoustical Society of America.

[40]  Christos C. Chamis,et al.  Optimization of adaptive intraply hybrid fiber composites with reliability considerations , 1994, Smart Structures.

[41]  J. Juang Applied system identification , 1994 .

[42]  Gene H. Haertling,et al.  Rainbow Ceramics-A New Type of Ultra-High-Displacement Actuator , 1994 .

[43]  Chuh Mei,et al.  Control of sonic fatigue for high-speed flight vehicles using shape memory alloys , 1998, Smart Structures.

[44]  A. Cain,et al.  NUMERICAL SIMULATION OF SYNTHETIC JET ACTUATORS , 1997 .