Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics.

The field of nanophotonics focuses on the ability to confine light to nanoscale dimensions, typically much smaller than the wavelength of light. The goal is to develop light-based technologies that are impossible with traditional optics. Subdiffractional confinement can be achieved using either surface plasmon polaritons (SPPs) or surface phonon polaritons (SPhPs). SPPs can provide a gate-tunable, broad-bandwidth response, but suffer from high optical losses; whereas SPhPs offer a relatively low-loss, crystal-dependent optical response, but only over a narrow spectral range, with limited opportunities for active tunability. Here, motivated by the recent results from monolayer graphene and multilayer hexagonal boron nitride heterostructures, we discuss the potential of electromagnetic hybrids--materials incorporating mixtures of SPPs and SPhPs--for overcoming the limitations of the individual polaritons. Furthermore, we also propose a new type of atomic-scale hybrid--the crystalline hybrid--where mixtures of two or more atomic-scale (∼3 nm or less) polar dielectric materials lead to the creation of a new material resulting from hybridized optic phonon behaviour of the constituents, potentially allowing direct control over the dielectric function. These atomic-scale hybrids expand the toolkit of materials for mid-infrared to terahertz nanophotonics and could enable the creation of novel actively tunable, yet low-loss optics at the nanoscale.

[1]  Jacob B Khurgin How to deal with the loss in plasmonics and metamaterials. , 2015, Nature nanotechnology.

[2]  K. Novoselov,et al.  Van der Waals heterostructures: Mid-infrared nanophotonics. , 2015, Nature materials.

[3]  R. Englman,et al.  Optical phonons of small crystals , 1970 .

[4]  F. Xia,et al.  Tunable Plasmon–Phonon Polaritons in Layered Graphene–Hexagonal Boron Nitride Heterostructures , 2015 .

[5]  Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material , 2015, Nature communications.

[6]  S. Maier,et al.  Spectral Tuning of Localized Surface Phonon Polariton Resonators for Low-Loss Mid-IR Applications , 2014 .

[7]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[8]  Michael S. Shur,et al.  Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures , 2010 .

[9]  M. Goldflam,et al.  Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. , 2015, Nature nanotechnology.

[10]  Donhee Ham,et al.  Ultra-subwavelength two-dimensional plasmonic circuits. , 2012, Nano letters.

[11]  E. H. Hwang,et al.  Plasmon-phonon coupling in graphene , 2010, 1008.0862.

[12]  C. N. Lau,et al.  Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface. , 2011, Nano letters (Print).

[13]  A. Kildishev,et al.  Titanium nitride as a plasmonic material for visible and near-infrared wavelengths , 2012 .

[14]  Stefan A. Maier,et al.  Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons , 2015 .

[15]  I. Vurgaftman,et al.  Probing hyperbolic polaritons , 2015, Nature Photonics.

[16]  J. A. Schaefer,et al.  Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem , 2010, 1008.1130.

[17]  Minghui Hong,et al.  Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride , 2014, Nature Communications.

[18]  Adam D. Dunkelberger,et al.  Photoinduced tunability of the Reststrahlen band in 4H-SiC , 2015, 1511.09428.

[19]  D. Wasserman,et al.  Mid-infrared designer metals , 2012 .

[20]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[21]  Z. Jacob,et al.  Quantum nanophotonics using hyperbolic metamaterials , 2012, 1204.5529.

[22]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[23]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[24]  D. Wasserman,et al.  Mid-infrared designer metals , 2012, IEEE Photonics Conference 2012.

[25]  Tim Byrnes,et al.  Exciton–polariton condensates , 2014, Nature Physics.

[26]  T. Taniguchi,et al.  Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy. , 2015, Nanoscale.

[27]  K. Kern,et al.  Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible , 2014 .

[28]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[29]  Frank H. L. Koppens,et al.  Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity , 2015, Nature Photonics.

[30]  P. Ajayan,et al.  Gated tunability and hybridization of localized plasmons in nanostructured graphene. , 2013, ACS nano.

[31]  Phaedon Avouris,et al.  Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System. , 2015, Nano letters.

[32]  Hiroshi Harima,et al.  Raman scattering from anisotropic LO‐phonon–plasmon–coupled mode in n‐type 4H– and 6H–SiC , 1995 .

[33]  T. Ohms,et al.  Do Mie plasmons have a longer lifetime on resonance than off resonance? , 2001 .

[34]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[35]  H. Atwater,et al.  Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. , 2014, Nano letters.

[36]  T. Taubner,et al.  Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. , 2013, Nano letters.

[37]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[38]  P. Avouris,et al.  Plasmon-plasmon hybridization and bandwidth enhancement in nanostructured graphene. , 2015, Nano letters.

[39]  Walter R. Buchwald,et al.  Tunable two-dimensional plasmon resonances in an InGaAs/InP high electron mobility transistor , 2009 .

[40]  S. Maier,et al.  Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. , 2013, Nano letters.

[41]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[42]  Jacob B Khurgin,et al.  Scaling of losses with size and wavelength in nanoplasmonics and metamaterials , 2011 .

[43]  M. Kuwata-Gonokami,et al.  Midinfrared pump-probe reflection spectroscopy of the coupled phonon-plasmon mode in GaN , 2002 .

[44]  W. Lambrecht,et al.  Computational study of phonon modes in short-period AlN/GaN superlattices , 2009 .

[45]  Thomas Taubner,et al.  Optical antenna thermal emitters , 2009 .

[46]  F. Keilmann,et al.  Phonon-enhanced light–matter interaction at the nanometre scale , 2002, Nature.

[47]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[48]  F. Wise,et al.  Far-infrared absorption of PbSe nanorods. , 2011, Nano letters.

[49]  T. Taubner,et al.  Multi-wavelength superlensing with layered phonon-resonant dielectrics. , 2012, Optics express.

[50]  Brian F. Donovan,et al.  Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. , 2015, Nature materials.

[51]  John A. Woollam,et al.  Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry , 1999 .

[52]  Peining Li,et al.  Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing , 2015, Nature communications.

[53]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[54]  BCS-BEC crossover in a system of microcavity polaritons , 2005, cond-mat/0503184.

[55]  Alexander A. Balandin,et al.  Phononics in low-dimensional materials , 2012 .

[56]  Benjamin J. Carey,et al.  Plasmon resonances of highly doped two-dimensional MoS₂. , 2015, Nano letters.

[57]  A. Rodin,et al.  Infrared nanospectroscopy and imaging of collective superfluid excitations in anisotropic superconductors , 2014, 1407.6072.