Coupled-cavity VCSELs: numerical analysis of physical phenomena

A self-consistent model of a GaAs-based 850 nm coupled-cavity vertical-cavity surface-emitting diode laser is presented. The analyzed laser consists of two identical AlGaAs cavities with GaAs quantum wells, separated with 10 pairs of middle DBR. The current apertures are realized by ion-implantation for the top cavity and selective oxidation for the bottom. To accurately simulate the physical phenomena present in the CW regime of the analyzed device, we use a multi-physical model, which comprises self-consistent Finite Element Method (FEM) thermo-electrical model. The numerical parameters have been found by the calibration based on experimental results. We have analyzed and shown the influence of the driving voltages on the temperature distribution within the analyzed structure and current densities in both cavities.

[1]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits: Coldren/Diode Lasers 2E , 2012 .

[2]  Arlee V. Smith,et al.  Vertical Cavity Surface Emitting Lasers , 2002 .

[3]  Takahiro Numai Fundamentals of semiconductor lasers , 2004 .

[4]  C. Weisbuch,et al.  Dual-wavelength laser emission from a coupled semiconductor microcavity , 1997 .

[5]  K. Choquette,et al.  Temperature-dependent polarization characteristics of composite-resonator vertical-cavity lasers , 2005, IEEE Journal of Quantum Electronics.

[6]  H. Thienpont,et al.  Coupled-cavity surface-emitting lasers: spectral and polarization threshold characteristics and electrooptic switching. , 2010, Optics express.

[7]  Marc Ilegems,et al.  Coupled semiconductor microcavities , 1994 .

[8]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[9]  Sadao Adachi,et al.  Properties of Semiconductor Alloys , 2009 .

[10]  A. Inoue,et al.  Anomalous electrical resistive behaviour of Al-O-Pb sputtered alloys , 1987 .

[11]  S. Yu Analysis and Design of Vertical Cavity Surface Emitting Lasers: YU/Surface Emitting Lasers , 2005 .

[12]  Jean-Louis Oudar,et al.  Thermal conductance of laterally-wet-oxidised GaAs/AlxOy Bragg reflectors , 2006 .

[13]  Robert P. Sarzała,et al.  Optimization of 1.3 µm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation , 2004 .

[14]  Uwe Fink,et al.  Properties Of Semiconductor Alloys Group Iv Iii V And Ii Vi Semiconductors , 2016 .

[15]  M. Brunner,et al.  Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser , 2000, IEEE Photonics Technology Letters.

[16]  Peter Michler,et al.  Dynamics Of Dual-wavelength Emission From A Coupled Semiconductor Microcavity Laser , 1997, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[17]  G. Verschaffelt,et al.  Control of polarization switching in vertical coupled-cavities surface emitting lasers , 2004, IEEE Photonics Technology Letters.

[18]  Marc Ilegems,et al.  The dual wavelength Bi-vertical cavity surface-emitting laser , 1999 .

[19]  Vlad Badilita,et al.  Light-current characterization of dual-wavelength VCSELs , 2002, SPIE OPTO.

[20]  Kent D. Choquette,et al.  Coupled resonator vertical-cavity laser diode , 1999 .

[21]  Robert P. Sarzała,et al.  GaInNAs quantum-well vertical-cavity surface-emitting lasers emitting at 2.33 μm , 2013 .

[22]  Alex M. Andrew,et al.  Analysis and Design of Vertical Cavity Surface Emitting Lasers , 2004 .

[23]  V. Badilita,et al.  Rate-equation model for coupled-cavity surface-emitting lasers , 2004, IEEE Journal of Quantum Electronics.