Generalized Rough Set Models

[1]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[2]  S. Haack Philosophy of logics , 1978 .

[3]  W. Zakowski APPROXIMATIONS IN THE SPACE (U,π) , 1983 .

[4]  Ewa Orlowska,et al.  A logic of indiscernibility relations , 1984, Symposium on Computation Theory.

[5]  Zdzisław Pawlak,et al.  Measurement and indiscernibility , 1984 .

[6]  Wolfgang Bibel,et al.  Mathematical Methods of Specification and Synthesis of Software Systems '85 , 1986, Lecture Notes in Computer Science.

[7]  T. Iwiński Algebraic approach to rough sets , 1987 .

[8]  S. K. Wong,et al.  Comparison of the probabilistic approximate classification and the fuzzy set model , 1987 .

[9]  Ewa Orlowska Logical aspects of learning concepts , 1988, Int. J. Approx. Reason..

[10]  J. A. Pomykala,et al.  On definability in the nondeterministic information system , 1988 .

[11]  S. K. Michael Wong,et al.  Rough Sets: Probabilistic versus Deterministic Approach , 1988, Int. J. Man Mach. Stud..

[12]  J. A. Pomykala,et al.  The stone algebra of rough sets , 1988 .

[13]  A. Wiweger On topological rough sets , 1989 .

[14]  U. Wybraniec-Skardowska On a generalization of approximation space , 1989 .

[15]  Maciej Wygralak Rough sets and fuzzy sets—some remarks on interrelations , 1989 .

[16]  I. Graham Non-standard logics for automated reasoning , 1990 .

[17]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[18]  Ewa Orlowska,et al.  Kripke semantics for knowledge representation logics , 1990, Stud Logica.

[19]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[20]  Arie Tzvieli,et al.  Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[21]  S. K. Michael Wong,et al.  Two Perspectives of the Dempster-Shafer Theory of Belief Functions , 1990, Int. J. Man Mach. Stud..

[22]  Dimiter Vakarelov,et al.  A model logic for similarity relations in pawlak knowledge representation systems , 1991, Fundam. Informaticae.

[23]  A. Nakamura,et al.  A logic for fuzzy data analysis , 1991 .

[24]  Dimiter Vakarelov,et al.  Modal Logics for Knowledge Representation Systems , 1989, Theor. Comput. Sci..

[25]  A logic for reasoning about stochastic information , 1991 .

[26]  Stephen D. Comer,et al.  An algebraic approach to the approximation of information , 1991, Fundamenta Informaticae.

[27]  L. Zadeh,et al.  Fuzzy Logic for the Management of Uncertainty , 1992 .

[28]  A. Nakamura,et al.  On a KTB-modal fuzzy logic , 1992 .

[29]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[30]  Yiyu Yao,et al.  A Decision Theoretic Framework for Approximating Concepts , 1992, Int. J. Man Mach. Stud..

[31]  Dorota Kuchta,et al.  Further remarks on the relation between rough and fuzzy sets , 1992 .

[32]  R. Słowiński Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory , 1992 .

[33]  Akira Nakamura On a Logic Based on Graded Modalities , 1993 .

[34]  Tsau Young Lin,et al.  Rough Approximate Operators: Axiomatic Rough Set Theory , 1993, RSKD.

[35]  Ewa Orlowska,et al.  Rough Set Semantics for Non-classical Logics , 1993, RSKD.

[36]  Andrzej Skowron Management of Uncertainty in AI: A Rough Set Approach , 1993, SOFTEKS Workshop on Incompleteness and Uncertainty in Information Systems.

[37]  S. D. Comer,et al.  On connections between information systems, rough sets and algebraic logic , 1993 .

[38]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[39]  S. K. Wong,et al.  REPRESENTATION, PROPAGATION AND COMBINATION OF UNCERTAIN INFORMATION , 1994 .

[40]  George J. Klir,et al.  On modal logic interpretation of Dempster–Shafer theory of evidence , 1994, Int. J. Intell. Syst..

[41]  George J. Klir,et al.  On Modal Logic Interpretation of Possibility Theory , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[42]  C. J. V. Rijsbergen,et al.  Rough Sets, Fuzzy Sets and Knowledge Discovery , 1994, Workshops in Computing.

[43]  Hung T. Nguyen,et al.  A History and Introduction to the Algebra of Conditional Events and Probability Logic , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[44]  Y. Yao,et al.  A NON-NUMERIC APPROACH TO UNCERTAIN REASONING , 1995 .

[45]  D. Vanderpooten Similarity Relation as a Basis for Rough Approximations , 1995 .

[46]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[47]  T. Y. Lin tylin,et al.  NEIGHBORHOOD SYSTEMS : A Qualitative Theory for Fuzzy and Rough , 1995 .

[48]  Yiyu Yao,et al.  ON MODELING UNCERTAINTY WITH INTERVAL STRUCTURES , 1995, Comput. Intell..

[49]  Yiyu Yao,et al.  Two views of the theory of rough sets in finite universes , 1996, Int. J. Approx. Reason..

[50]  Piero Pagliani,et al.  Rough Sets and Nelson Algebras , 1996, Fundam. Informaticae.

[51]  Tsau Young Lin,et al.  Rough Sets and Data Mining: Analysis of Imprecise Data , 1996 .

[52]  Andrzej Skowron,et al.  Rough mereology: A new paradigm for approximate reasoning , 1996, Int. J. Approx. Reason..

[53]  Roman Slowinski,et al.  Rough-Set Reasoning about Uncertain Data , 1996, Fundam. Informaticae.

[54]  Yiyu Yao,et al.  Generalization of Rough Sets using Modal Logics , 1996, Intell. Autom. Soft Comput..

[55]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[56]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[57]  Y.Y. Yao Representations of rough set approximation operators , 1996, Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium.

[58]  Laurent Vigneron,et al.  Rough And Modal Algebras , 1996 .

[59]  Gianpiero Cattaneo,et al.  Generalized Rough Sets (Preclusivity Fuzzy-Intuitionistic (BZ) Lattices) , 1997, Stud Logica.

[60]  Paul P. Wang Advances in machine intelligence & soft-computing , 1997 .

[61]  Y. Yao,et al.  Interval based Uncertain Reasoning using Fuzzy and Rough Sets , 1997 .

[62]  Beata Konikowska,et al.  A Logic for Reasoning about Relative Similarity , 1997, Stud Logica.

[63]  Yiyu Yao Combination of Rough and Fuzzy Sets Based on α-Level Sets , 1997 .

[64]  Yiyu Yao,et al.  Interval Approaches for Uncertain Reasoning , 1997, ISMIS.

[65]  Tsau Young Lin,et al.  A Review of Rough Set Models , 1997 .

[66]  Z. INFORMATION SYSTEMS THEORETICAL FOUNDATIONS , 2022 .