Young Measure Solutions for Nonconvex Elastodynamics

We study the nonlinear equation of elastodynamics where the free energy functional is allowed to be nonconvex. We define the notion of Young measure solutions for this problem and prove an existence theorem in this class. This can be used as a model for the evolution of microstructures in crystals. We furthermore introduce an optional coupling with a parabolic equation and prove the existence of a Young measure solution for this system.

[1]  R. J. DiPerna Convergence of approximate solutions to conservation laws , 1983 .

[2]  F. Theil Young‐Measure Solutions for a Viscoelastically Damped Wave Equation with Nonmonotone Stress‐Strain Relation , 1998 .

[3]  F. Theil,et al.  A Study of a Hamiltonian Model for Martensitic Phase fransformations Including Microkinetic Energy , 1998, patt-sol/9811006.

[4]  Mathematische Modellierung und Analyse von Formgedachtnislegierungen in mehreren Raumdimensionen , 2000 .

[5]  Sophia Demoulini,et al.  Young measure solutions for a nonlinear parabolic equation of forward-backward type , 1996 .

[6]  Sophia Demoulini,et al.  Young measure solutions for nonlinear evolutionary systems of mixed type , 1997 .

[7]  M. Rieger Nonconvex Dynamical Problems , 2004 .

[8]  J. Málek Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .

[9]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[10]  Gero Friesecke,et al.  Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy , 1997 .

[11]  Sophia Demoulini,et al.  A Variational Approximation Scheme for¶Three-Dimensional Elastodynamics¶with Polyconvex Energy , 2001 .

[12]  Pablo Pedregal,et al.  Weak convergence of integrands and the young measure representation , 1992 .

[13]  Constantine M. Dafermos,et al.  Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics , 1985 .

[14]  Pablo Pedregal,et al.  Gradient Young measures generated by sequences in Sobolev spaces , 1994 .

[15]  P. Pedregal Parametrized measures and variational principles , 1997 .

[16]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[17]  M. Slemrod Dynamics of measured valued solutions to a backward-forward heat equation , 1991 .

[18]  S. Müller Variational models for microstructure and phase transitions , 1999 .

[19]  J. Ball,et al.  Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity , 1982 .