Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction

The invention of optical tweezers more than three decades ago has opened new avenues in the study of the mechanical properties of biological molecules and cells. Quantitative force measurements still represent a challenging task in living cells due to the complexity of the cellular environment. Here, we review different methodologies to quantitatively measure the mechanical properties of living cells, the strength of adhesion/receptor bonds, and the active force produced during intracellular transport, cell adhesion, and migration. We discuss experimental strategies to attain proper calibration of optical tweezers and molecular resolution in living cells. Finally, we show recent studies on the transduction of mechanical stimuli into biomolecular and genetic signals that play a critical role in cell health and disease.

[1]  Arthur Ashkin,et al.  Optical Levitation by Radiation Pressure , 1971 .

[2]  Paul R Selvin,et al.  In vivo optical trapping indicates kinesin’s stall force is reduced by dynein during intracellular transport , 2013, Proceedings of the National Academy of Sciences.

[3]  Francesco S. Pavone,et al.  OPTICS; ATOMS and MOLECULES; SPECTROSCOPY 1687 Calibration of optical tweezers with differential interference contrast signals , 2002 .

[4]  Steven P Gross,et al.  Developmental Regulation of Vesicle Transport in Drosophila Embryos: Forces and Kinetics , 1998, Cell.

[5]  Michael P. Sheetz,et al.  Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin , 2003, Nature.

[6]  G. Hummer,et al.  Theory, analysis, and interpretation of single-molecule force spectroscopy experiments , 2008, Proceedings of the National Academy of Sciences.

[7]  R. Robertson-Anderson,et al.  Co-Entangled Actin-Microtubule Composites Exhibit Tunable Stiffness and Power-Law Stress Relaxation. , 2018, Biophysical journal.

[8]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[9]  E. Botvinick,et al.  Laser tweezers in the study of mechanobiology in live cells. , 2007, Methods in cell biology.

[10]  Cécile Boscher,et al.  A Molecular Clutch between the Actin Flow and N-Cadherin Adhesions Drives Growth Cone Migration , 2008, The Journal of Neuroscience.

[11]  H. Nussenzveig Cell membrane biophysics with optical tweezers , 2017, European Biophysics Journal.

[12]  M. Dogterom,et al.  Membrane tube formation from giant vesicles by dynamic association of motor proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  B. Goud,et al.  Mapping intracellular mechanics on micropatterned substrates , 2016, Proceedings of the National Academy of Sciences.

[14]  Shuichiro Ogawa,et al.  Critical roles for murine Reck in the regulation of vascular patterning and stabilization , 2015, Scientific Reports.

[15]  J. Käs,et al.  Optical deformability of soft biological dielectrics. , 2000, Physical review letters.

[16]  M. S. Yousafzai,et al.  Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation , 2016, Nanotechnology.

[17]  Daniel Choquet,et al.  Extracellular Matrix Rigidity Causes Strengthening of Integrin–Cytoskeleton Linkages , 1997, Cell.

[18]  Matteo Pasquali,et al.  High-resolution mapping of intracellular fluctuations using carbon nanotubes , 2014, Science.

[19]  Steven M Block,et al.  Passive all-optical force clamp for high-resolution laser trapping. , 2005, Physical review letters.

[20]  E. Reinherz,et al.  The αβ T Cell Receptor Is an Anisotropic Mechanosensor* , 2009, The Journal of Biological Chemistry.

[21]  A. Ashkin,et al.  Internal cell manipulation using infrared laser traps. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[23]  Christoph F. Schmidt,et al.  Conformation and elasticity of the isolated red blood cell membrane skeleton. , 1992, Biophysical journal.

[24]  Melina Schuh,et al.  An actin-dependent mechanism for long-range vesicle transport , 2011, Nature Cell Biology.

[25]  C. Schmidt,et al.  Force fluctuations in three-dimensional suspended fibroblasts , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[26]  R. Mallik,et al.  Quantitative optical trapping on single cellular organelles in cell extract , 2012, Nature Methods.

[27]  M. Tassieri Microrheology with optical tweezers: peaks & troughs , 2019, Current Opinion in Colloid & Interface Science.

[28]  Anatoly B Kolomeisky,et al.  Dynamic force spectroscopy of glycoprotein Ib-IX and von Willebrand factor. , 2005, Biophysical journal.

[29]  R M Hochmuth,et al.  Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. , 1973, Biophysical journal.

[30]  Dan Cojoc,et al.  Substrate-dependent cell elasticity measured by optical tweezers indentation , 2016 .

[31]  Eric F. Wieschaus,et al.  Coordination of opposite-polarity microtubule motors , 2002, The Journal of cell biology.

[32]  Francesco S Pavone,et al.  Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecule level , 2018, Nature Communications.

[33]  P. Janmey,et al.  Soft Hyaluronic Gels Promote Cell Spreading, Stress Fibers, Focal Adhesion, and Membrane Tension by Phosphoinositide Signaling, Not Traction Force. , 2018, ACS nano.

[34]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[35]  A. Gennerich Optical Tweezers , 2017, Methods in Molecular Biology.

[36]  Paolo Minzioni,et al.  A Comprehensive Review of Optical Stretcher for Cell Mechanical Characterization at Single-Cell Level , 2016, Micromachines.

[37]  S. Mochrie,et al.  The tethering of chromatin to the nuclear envelope supports nuclear mechanics , 2015, Nature Communications.

[38]  Jean-Jacques Meister,et al.  Short-term binding of fibroblasts to fibronectin: optical tweezers experiments and probabilistic analysis , 2000, European Biophysics Journal.

[39]  M. Bastmeyer,et al.  Multiple Trap Optical Tweezers for Live Cell Force Measurements , 2011 .

[40]  R. Mallik,et al.  Molecular Adaptations Allow Dynein to Generate Large Collective Forces inside Cells , 2013, Cell.

[41]  Ellis L Reinherz,et al.  Mechanosensing drives acuity of αβ T-cell recognition , 2017, Proceedings of the National Academy of Sciences.

[42]  P. Bassereau,et al.  Dynamics of membrane tethers reveal novel aspects of cytoskeleton-membrane interactions in axons. , 2015, Biophysical journal.

[43]  Subra Suresh,et al.  Large deformation of living cells using laser traps , 2004 .

[44]  Kai Bodensiek,et al.  Cell Visco-Elasticity Measured with AFM and Optical Trapping at Sub-Micrometer Deformations , 2012, PloS one.

[45]  J. Weisel,et al.  Protein-protein unbinding induced by force: single-molecule studies. , 2003, Current opinion in structural biology.

[46]  Eric R Dufresne,et al.  Multiplexed force measurements on live cells with holographic optical tweezers. , 2009, Optics express.

[47]  P. Bassereau,et al.  A minimal system allowing tubulation with molecular motors pulling on giant liposomes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Philippe Mailly,et al.  Active diffusion positions the nucleus in mouse oocytes , 2015, Nature Cell Biology.

[49]  Dong Sun,et al.  Probing the mechanobiological properties of human embryonic stem cells in cardiac differentiation by optical tweezers. , 2012, Journal of biomechanics.

[50]  Elliot Botvinick,et al.  Optical tweezers studies on Notch: single-molecule interaction strength is independent of ligand endocytosis. , 2012, Developmental cell.

[51]  E. Stelzer,et al.  Three‐dimensional high‐resolution particle tracking for optical tweezers by forward scattered light , 1999, Microscopy research and technique.

[52]  Subra Suresh,et al.  The biomechanics toolbox: experimental approaches for living cells and biomolecules , 2003 .

[53]  M. Sheetz,et al.  Immediate-Early Signaling Induced by E-cadherin Engagement and Adhesion* , 2008, Journal of Biological Chemistry.

[54]  M. Bastmeyer,et al.  Force Mapping during the Formation and Maturation of Cell Adhesion Sites with Multiple Optical Tweezers , 2013, PloS one.

[55]  Chwee Teck Lim,et al.  Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. , 2005, Acta biomaterialia.

[56]  E. Botvinick,et al.  Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. , 2012, Developmental cell.

[57]  J. Dai,et al.  Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. , 1995, Biophysical journal.

[58]  Francesco S Pavone,et al.  Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. , 2013, Biophysical journal.

[59]  F. C. MacKintosh,et al.  Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations , 1997 .

[60]  J. Weisel,et al.  Binding strength and activation state of single fibrinogen-integrin pairs on living cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. Grodzinsky,et al.  Size- and speed-dependent mechanical behavior in living mammalian cytoplasm , 2017, Proceedings of the National Academy of Sciences.

[62]  Tadao Sugiura,et al.  Localized cell stiffness measurement using axial movement of an optically trapped microparticle , 2013, Journal of biomedical optics.

[63]  Carlos E. Castro,et al.  Passive and active microrheology with optical tweezers , 2007 .

[64]  E. Evans,et al.  Dynamic strength of molecular adhesion bonds. , 1997, Biophysical journal.

[65]  Michael P. Sheetz,et al.  Cell control by membrane–cytoskeleton adhesion , 2001, Nature Reviews Molecular Cell Biology.

[66]  J. Glückstad,et al.  Strategies for Optical Trapping in Biological Samples: Aiming at Microrobotic Surgeons , 2019, Laser & Photonics Reviews.

[67]  F. Sachs Mechanical Transduction and the Dark Energy of Biology. , 2018, Biophysical journal.

[68]  R. Waugh,et al.  Mechanical equilibrium of thick, hollow, liquid membrane cylinders. , 1987, Biophysical journal.

[69]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[70]  R. Simmons,et al.  Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. , 1999, Biophysical journal.

[71]  F. MacKintosh,et al.  Nonequilibrium Mechanics of Active Cytoskeletal Networks , 2007, Science.

[72]  K. Schütze,et al.  Force generation of organelle transport measured in vivo by an infrared laser trap , 1990, Nature.

[73]  Andrew C. Richardson,et al.  Active-passive calibration of optical tweezers in viscoelastic media. , 2010, The Review of scientific instruments.

[74]  Daisuke Mizuno,et al.  High-resolution probing of cellular force transmission. , 2009, Physical review letters.

[75]  Mario Fischer,et al.  Calibration of trapping force and response function of optical tweezers in viscoelastic media , 2007 .

[76]  Akihiro Kusumi,et al.  Cytoplasmic Regulation of the Movement of E-Cadherin on the Free Cell Surface as Studied by Optical Tweezers and Single Particle Tracking: Corralling and Tethering by the Membrane Skeleton , 1998, The Journal of cell biology.

[77]  C. P. Winlove,et al.  The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell. , 1999, Biophysical journal.

[78]  Cornelia Denz,et al.  Holographic optical tweezers‐based in vivo manipulations in zebrafish embryos , 2017, Journal of biophotonics.

[79]  Ming Guo,et al.  Probing the Stochastic, Motor-Driven Properties of the Cytoplasm Using Force Spectrum Microscopy , 2014, Cell.

[80]  A P Mackenzie,et al.  Phase bifurcation and quantum fluctuations in Sr3Ru2O7. , 2005, Physical review letters.

[81]  J. Käs,et al.  The optical stretcher: a novel laser tool to micromanipulate cells. , 2001, Biophysical journal.

[82]  N. B. Viana,et al.  Cell cytoskeleton and tether extraction. , 2011, Biophysical journal.

[83]  C. Schmidt,et al.  Interference model for back-focal-plane displacement detection in optical tweezers. , 1998, Optics letters.

[84]  Taekjip Ha,et al.  Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics , 2010, Nature.

[85]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[86]  Jinju Chen,et al.  Nanobiomechanics of living cells: a review , 2014, Interface Focus.

[87]  Michael P. Sheetz,et al.  The relationship between force and focal complex development , 2002, The Journal of cell biology.

[88]  E. Derivery,et al.  A Fluorescent Membrane Tension Probe , 2018, Nature Chemistry.

[89]  V. Torre,et al.  Cell Mechanotransduction With Piconewton Forces Applied by Optical Tweezers , 2018, Front. Cell. Neurosci..

[90]  Steven P. Gross,et al.  Consequences of Motor Copy Number on the Intracellular Transport of Kinesin-1-Driven Lipid Droplets , 2008, Cell.

[91]  M. Tassieri Linear microrheology with optical tweezers of living cells 'is not an option'! , 2015, Soft matter.

[92]  M. Kozlov,et al.  Front-to-rear membrane tension gradient in rapidly moving cells. , 2015, Biophysical journal.

[93]  Thomas J. Smart,et al.  Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique , 2016, Scientific Reports.

[94]  Bahman Anvari,et al.  Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. , 2002, Blood.

[95]  Robert A. Bloodgood,et al.  The reciprocal coordination and mechanics of molecular motors in living cells , 2009, Proceedings of the National Academy of Sciences.

[96]  Alfonso H.W. Ngan,et al.  Accurate measurement of stiffness of leukemia cells and leukocytes using an optical trap by a rate-jump method , 2014 .

[97]  Steven P Gross,et al.  Calibration of optical tweezers for in vivo force measurements: how do different approaches compare? , 2014, Biophysical journal.

[98]  David A Weitz,et al.  The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. , 2013, Biophysical journal.

[99]  S. Maier,et al.  Plasmon induced thermoelectric effect in graphene , 2018, Nature Communications.

[100]  W. Brownell,et al.  Effects of Plasma Membrane Cholesterol Level and Cytoskeleton F-Actin on Cell Protrusion Mechanics , 2013, PloS one.

[101]  J. Shao,et al.  Deformation and flow of membrane into tethers extracted from neuronal growth cones. , 1996, Biophysical journal.

[102]  Jing Wang,et al.  A comparative study of living cell micromechanical properties by oscillatory optical tweezers. , 2008, Optics express.

[103]  Nataliia Guz,et al.  If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. , 2014, Biophysical journal.

[104]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[105]  M. Baker How the Internet of cells has biologists buzzing , 2017, Nature.

[106]  S. Suresh,et al.  Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum , 2007, Proceedings of the National Academy of Sciences.

[107]  Adam G. Hendricks,et al.  Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors , 2012, Proceedings of the National Academy of Sciences.

[108]  X. Xie,et al.  Probing dynein and kinesin stepping with mechanical manipulation in a living cell. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[109]  Elliot L. Botvinick,et al.  Visualizing the mechanical activation of Src , 2005, Nature.

[110]  Francesco S. Pavone,et al.  Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke , 2012, Nature Methods.

[111]  Ning Wang,et al.  Distinct mechanisms regulating mechanical force-induced Ca2+ signals at the plasma membrane and the ER in human MSCs , 2014, eLife.

[112]  G. Voth,et al.  Friction Mediates Scission of Tubular Membranes Scaffolded by BAR Proteins , 2017, Cell.

[113]  Jochen Guck,et al.  Critical review: cellular mechanobiology and amoeboid migration. , 2010, Integrative biology : quantitative biosciences from nano to macro.

[114]  M. Sheetz,et al.  Characteristics of a membrane reservoir buffering membrane tension. , 1999, Biophysical journal.

[115]  C. Lim,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[116]  F. Schmidt-Kaler,et al.  Nuclear charge radii of 7,9,10Be and the one-neutron halo nucleus 11Be. , 2008, Physical review letters.