Studying Animation for Real-Time Visual Analytics: A Design Study of Social Media Analytics in Emergency Management

Domains such as emergency management have a need for real-time change monitoring and pattern analysis, but interface design principles for real-time visual analysis situations are still under development. In this paper, we present early results from a design study in social media visual analytics for emergency management. Our motivation is a main information visualization challenge: the lack of clear design principles informed by research in human cognition for the use of animation in real-time streams. We discuss three domain-specific challenges: (1) Coping with the high volume of social media data that is generated during disaster response, (2) analysts' need to quickly extract relevant features for real-time sense-making; and (3) the effective analysis of social media streams even when some critical attributes are absent. This paper presents preliminary results on a research-based design principle for the use of animation in real-time visual analytics, targeted to support the real-time analysis of social media data in emergency management.

[1]  David S. Ebert,et al.  Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[2]  Jeannie A. Stamberger,et al.  Crowd sentiment detection during disasters and crises , 2012, ISCRAM.

[3]  Mike Thelwall,et al.  Sentiment strength detection for the social web , 2012, J. Assoc. Inf. Sci. Technol..

[4]  Lei Shi,et al.  VISA: a visual sentiment analysis system , 2012, VINCI.

[5]  Amanda Lee Hughes,et al.  Collective Intelligence in Disaster: Examination of the Phenomenon in the Aftermath of the 2007 Virginia Tech Shooting , 2008 .

[6]  Mohammad Ali Abbasi,et al.  TweetTracker: An Analysis Tool for Humanitarian and Disaster Relief , 2011, ICWSM.

[7]  Michelle L. Gregory,et al.  Visual Analysis of Weblog Content , 2007, ICWSM.

[8]  Daniel A. Keim,et al.  Visual analysis of news streams with article threads , 2010, StreamKDD '10.

[9]  Monika Büscher,et al.  Peripheral response: Microblogging during the 22/7/2011 Norway attacks , 2012, ISCRAM.

[10]  Hans-Peter Kriegel,et al.  Recursive pattern: a technique for visualizing very large amounts of data , 1995, Proceedings Visualization '95.

[11]  Colin Ware,et al.  Visual Thinking for Design , 2008 .

[12]  Andrew U. Frank,et al.  Different Types of „Times“ in GIS , 2007 .

[13]  Xiao Zhang,et al.  SensePlace2: GeoTwitter analytics support for situational awareness , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[14]  Martin Wattenberg,et al.  Stacked Graphs – Geometry & Aesthetics , 2008, IEEE Transactions on Visualization and Computer Graphics.

[15]  Anthony C. Robinson,et al.  Leveraging geospatially-oriented social media communications in disaster response , 2012, ISCRAM.

[16]  A. Pentland,et al.  Collective intelligence , 2006, IEEE Comput. Intell. Mag..

[17]  Social media in disaster Japan , 2012 .

[18]  E. Noji,et al.  (A335) Emergent use of Social Media: A New Age of Opportunity for Disaster Resilience , 2011, Prehospital and Disaster Medicine.

[19]  Mark Harrower,et al.  The Cognitive Limits of Animated Maps , 2007, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[20]  Marc Alexa,et al.  Visualizing time-series on spirals , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[21]  Brian D. Fisher,et al.  Joint Action Theory and Pair Analytics: In-vivo Studies of Cognition and Social Interaction in Collaborative Visual Analytics , 2011, CogSci.

[22]  Brian D. Fisher,et al.  A Qualitative Methodology for the Design of Visual Analytic Tools for Emergency Operation Centers , 2013, 2013 46th Hawaii International Conference on System Sciences.

[23]  Jeannie A. Stamberger,et al.  Tweak the tweet: Leveraging microblogging proliferation with a prescriptive syntax to support citizen reporting , 2010, ISCRAM.

[24]  Heidrun Schumann,et al.  Visual Methods for Analyzing Time-Oriented Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[25]  Daniel A. Keim,et al.  Visual Analysis of Social Media Data , 2013, Computer.

[26]  Lucy T. Nowell,et al.  ThemeRiver: visualizing theme changes over time , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[27]  John T. Stasko,et al.  Effectiveness of Animation in Trend Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[28]  Barbara Tversky,et al.  Animation: can it facilitate? , 2002, Int. J. Hum. Comput. Stud..

[29]  William Ribarsky,et al.  Visual analytics for complex concepts using a human cognition model , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[30]  David A. Shamma,et al.  Visualizing live text streams using motion and temporal pooling , 2005, IEEE Computer Graphics and Applications.

[31]  Chris North,et al.  The Value of Information Visualization , 2008, Information Visualization.

[32]  Anders Grimvall,et al.  Visual Detection of Change Points and Trends Using Animated Bubble Charts , 2011 .

[33]  M. Sheelagh T. Carpendale,et al.  A Visual Backchannel for Large-Scale Events , 2010, IEEE Transactions on Visualization and Computer Graphics.

[34]  R.J.P. Stronkman,et al.  Towards a realtime Twitter analysis during crises for operational crisis management , 2012, ISCRAM.