Instant MOFs: continuous synthesis of metal-organic frameworks by rapid solvent mixing.

A continuous flow reactor allows the preparation of porous metal-organic framework materials with crystallisation induced by rapid mixing of streams of preheated water and solutions of reagents in organic solvent: this gives high volume production (132 g h(-1)) with crystallite size of the products from nanoscale to micron.

[1]  Craig M. Brown,et al.  Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination sites. , 2011, Journal of the American Chemical Society.

[2]  G. Peterson,et al.  MOF-74 building unit has a direct impact on toxic gas adsorption , 2011 .

[3]  Jun Kim,et al.  Sonochemical synthesis of MOF-5. , 2008, Chemical communications.

[4]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[5]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[6]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[7]  W. Marsden I and J , 2012 .

[8]  J. Klinowski,et al.  Microwave-assisted synthesis of metal-organic frameworks. , 2011, Dalton transactions.

[9]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[10]  C. Tang,et al.  Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide. , 2012, Dalton transactions.

[11]  E. Lester,et al.  Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles , 2012 .

[12]  Gérard Férey,et al.  Time-resolved in situ diffraction study of the solvothermal crystallization of some prototypical metal-organic frameworks. , 2010, Angewandte Chemie.

[13]  S. Sachdeva,et al.  Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges , 2012 .

[14]  Edward Lester,et al.  Reaction engineering: The supercritical water hydrothermal synthesis of nano-particles , 2006 .

[15]  R. Fischer,et al.  Nanocrystals of [Cu3(btc)2] (HKUST-1): a combined time-resolved light scattering and scanning electron microscopy study. , 2009, Chemical communications.

[16]  E. Haque,et al.  Synthesis of isostructural metal–organic frameworks, CPO-27s, with ultrasound, microwave, and conventional heating: Effect of synthesis methods and metal ions , 2011 .

[17]  T. Friščić New opportunities for materials synthesis using mechanochemistry , 2010 .

[18]  Shyam Biswas,et al.  Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. , 2012, Chemical reviews.

[19]  J. Johnson,et al.  Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2: An Effective Activation Procedure , 2007 .

[20]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[21]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[22]  F. Kapteijn,et al.  Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks , 2012 .

[23]  J. Eckert,et al.  Interaction of hydrogen with accessible metal sites in the metal-organic frameworks M(2)(dhtp) (CPO-27-M; M = Ni, Co, Mg). , 2010, Chemical communications.

[24]  Jong‐San Chang,et al.  Microwave synthesis of a nanoporous hybrid material, chromium trimesate , 2005 .