Development of a multiscale LES model in the context of a modal discontinuous Galerkin method

Abstract This paper introduces a variational multiscale simulation (VMS) approach in the context of high-order discontinuous Galerkin (DG) discretizations. First, a new calibration of the Smagorinsky model parameter ( C S Δ ) is proposed in terms of the DG discretization (grid size, h , and polynomial order, p ) and the selected VMS scale partition. Second, an efficient and simple implementation of the VMS version of the Smagorinsky model is presented. The dissipation properties of the DG discretizations for different values of h and p are then analysed based on Taylor–Green vortex computations in the limit of inviscid flow. The low levels of dissipation found for high-order DG discretizations emphasize the suitability of this type of discretization for LES. The performance of the presented approach is demonstrated by comparing DG/VMS computations of the Taylor–Green vortex at R e = 3000 with a reference spectral DNS.

[1]  Laslo T. Diosady,et al.  Higher-Order Methods for Compressible Turbulent Flows Using Entropy Variables , 2015 .

[2]  Alain Dervieux,et al.  Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects , 2011 .

[3]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[4]  M. de la Llave Plata,et al.  Aghora: A High-Order DG Solver for Turbulent Flow Simulations , 2015 .

[5]  Leland Jameson,et al.  Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor–Green Vortex Flow , 2005, J. Sci. Comput..

[6]  Claus-Dieter Munz,et al.  High‐order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations , 2014 .

[7]  Andrea Crivellini,et al.  An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations , 2006, J. Comput. Phys..

[8]  A. N. Kolmogorov Equations of turbulent motion in an incompressible fluid , 1941 .

[9]  Florent Renac,et al.  Inviscid and Viscous Simulations of the Taylor-Green Vortex Flow Using a Modal Discontinuous Galerkin Approach , 2012 .

[10]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[11]  L. Bricteux,et al.  Implicit LES of free and wall‐bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method , 2015 .

[12]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[13]  A. Beck,et al.  On the accuracy of high-order discretizations for underresolved turbulence simulations , 2013 .

[14]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[15]  Thomas J. R. Hughes,et al.  Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow , 2004 .

[16]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[17]  Claus-Dieter Munz,et al.  High-Order Discontinuous Galerkin Schemes for Large-Eddy Simulations of Moderate Reynolds Number Flows , 2015 .

[18]  Artur Tyliszczak,et al.  Large eddy simulation of incompressible free round jet with discontinuous Galerkin method , 2015 .

[19]  Favre filtering and macro-temperature in large-eddy simulations of compressible turbulence , 2001 .

[20]  Mark Ainsworth,et al.  Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods , 2004 .

[21]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[22]  George Em Karniadakis,et al.  A discontinuous Galerkin method for the Navier-Stokes equations , 1999 .

[23]  K. Lilly The representation of small-scale turbulence in numerical simulation experiments , 1966 .

[24]  Claus-Dieter Munz,et al.  Preconditioning for modal discontinuous Galerkin methods for unsteady 3D Navier-Stokes equations , 2013, J. Comput. Phys..

[25]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[26]  George Em Karniadakis,et al.  A NEW TRIANGULAR AND TETRAHEDRAL BASIS FOR HIGH-ORDER (HP) FINITE ELEMENT METHODS , 1995 .

[27]  Per-Olof Persson,et al.  Implicit Large Eddy Simulation of transition to turbulence at low Reynolds numbers using a Discontinuous Galerkin method , 2011 .

[28]  Marcel Lesieur,et al.  Large-Eddy Simulations of Turbulence , 2005 .

[29]  Srinivas Ramakrishnan,et al.  Turbulence control simulation using the variational multiscale method , 2004 .

[30]  F. Nicoud,et al.  Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor , 1999 .

[31]  Marta de la Llave Plata,et al.  Turbulent Flow Simulations with the High-Order DG Solver Aghora , 2015 .

[32]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[33]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[34]  E. Lamballais,et al.  DNS of Canonical Turbulent Flows Using the Modal Discontinuous Galerkin Method , 2015 .

[35]  R. Hartmann,et al.  Symmetric Interior Penalty DG Methods for the CompressibleNavier-Stokes Equations I: Method Formulation , 2005 .

[36]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[37]  P. Moin,et al.  A further study of numerical errors in large-eddy simulations , 2003 .

[38]  Spencer J. Sherwin,et al.  Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods , 2015, J. Comput. Phys..

[39]  Pierre Sagaut,et al.  Sensitivity of spectral variational multiscale methods for large-eddy simulation of isotropic turbulence , 2005 .

[40]  J. Tinsley Oden,et al.  A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .

[41]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[42]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[43]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[44]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[45]  Thomas J. R. Hughes,et al.  Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations , 2004 .

[46]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[47]  Steven J. Hulshoff,et al.  A modal-based multiscale method for large eddy simulation , 2007, J. Comput. Phys..

[48]  Claus-Dieter Munz,et al.  Explicit Discontinuous Galerkin methods for unsteady problems , 2012 .

[49]  P. Yeung,et al.  On the Universality of the Kolmogorov Constant in Numerical Simulations of Turbulence , 1997 .

[50]  Alain Dervieux,et al.  Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids , 2010 .

[51]  Bernardus J. Geurts,et al.  Computational error-analysis of a discontinuous Galerkin discretization applied to large-eddy simulation of homogeneous turbulence , 2010 .

[52]  Petros Koumoutsakos,et al.  A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers , 2011, J. Comput. Phys..

[53]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[54]  P. Moin,et al.  On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows , 1997 .

[55]  S. Collis,et al.  Partition selection in multiscale turbulence modeling , 2006 .

[56]  P. Sagaut,et al.  On the Use of Shock-Capturing Schemes for Large-Eddy Simulation , 1999 .

[57]  Laslo T. Diosady,et al.  Preconditioning methods for discontinuous Galerkin solutions of the Navier-Stokes equations , 2009, J. Comput. Phys..

[58]  Vít Dolejší,et al.  On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations , 2004 .

[59]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[60]  J. Ryan,et al.  The Elastoplast Discontinuous Galerkin (EDG) method for the Navier-Stokes equations , 2012, J. Comput. Phys..

[61]  E. Lamballais,et al.  Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows , 2014 .

[62]  Thor Gjesdal,et al.  Variational multiscale turbulence modelling in a high order spectral element method , 2009, J. Comput. Phys..

[63]  Bernardus J. Geurts,et al.  A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques , 2007 .