Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0

We study galactic star-formation activity as a function of environment and stellar mass over 0.5 9 (9.5)$ at z=1.3 (2.0). This method, when applied to a mock catalog with the photometric-redshift precision ($\sigma_z / (1+z) \lesssim 0.02$), recovers galaxies in low- and high-density environments accurately. We quantify the environmental quenching efficiency, and show that at z> 0.5 it depends on galaxy stellar mass, demonstrating that the effects of quenching related to (stellar) mass and environment are not separable. In high-density environments, the mass and environmental quenching efficiencies are comparable for massive galaxies ($\log (M/M_\odot)\gtrsim$ 10.5) at all redshifts. For lower mass galaxies ($\log (M/M)_\odot) \lesssim$ 10), the environmental quenching efficiency is very low at $z\gtrsim$ 1.5, but increases rapidly with decreasing redshift. Environmental quenching can account for nearly all quiescent lower mass galaxies ($\log(M/M_\odot) \sim$ 9-10), which appear primarily at $z\lesssim$ 1.0. The morphologies of lower mass quiescent galaxies are inconsistent with those expected of recently quenched star-forming galaxies. Some environmental process must transform the morphologies on similar timescales as the environmental quenching itself. The evolution of the environmental quenching favors models that combine gas starvation (as galaxies become satellites) with gas exhaustion through star-formation and outflows ("overconsumption"), and additional processes such as galaxy interactions, tidal stripping and disk fading to account for the morphological differences between the quiescent and star-forming galaxy populations.

[1]  A. Zirm,et al.  RESOLVING THE DISCREPANCY OF GALAXY MERGER FRACTION MEASUREMENTS AT z ∼ 0–3 , 2014, 1410.3479.

[2]  Puragra Guhathakurta,et al.  The DEEP3 Galaxy Redshift Survey: the impact of environment on the size evolution of massive early-type galaxies at intermediate redshift , 2011, 1109.5698.

[3]  H. Ferguson,et al.  BULGE GROWTH AND QUENCHING SINCE z = 2.5 IN CANDELS/3D-HST , 2014, 1402.0866.

[4]  Strangulation as the primary mechanism for shutting down star formation in galaxies , 2015, Nature.

[5]  M. Jarvis,et al.  Environmental quenching and galactic conformity in the galaxy cross-correlation signal , 2016, 1606.08989.

[6]  M. Rees,et al.  Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters , 1977 .

[7]  R. Muñoz,et al.  Larger sizes of massive quiescent early-type galaxies in clusters than in the field at 0.8 < z < 1.5 , 2013, 1307.0003.

[8]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[9]  S. E. Persson,et al.  SATELLITE QUENCHING AND GALACTIC CONFORMITY AT 0.3 < z < 2.5 , 2015, 1511.02862.

[10]  R. Dav'e,et al.  Hot gas in massive haloes drives both mass quenching and environment quenching , 2014, 1405.1043.

[11]  Guillermo Barro,et al.  Compaction and quenching of high-z galaxies in cosmological simulations: blue and red nuggets , 2014, 1412.4783.

[12]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[13]  C. Carollo,et al.  SURFACE DENSITY EFFECTS IN QUENCHING: CAUSE OR EFFECT? , 2016, 1604.06459.

[14]  G. Kauffmann,et al.  The accretion of gas on to galaxies as traced by their satellites , 2010, 1005.1825.

[15]  J. Navarro,et al.  The Origin of Star Formation Gradients in Rich Galaxy Clusters , 2000, astro-ph/0004078.

[16]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .

[17]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[18]  M. Balogh,et al.  The connection between galaxy structure and quenching efficiency , 2014, 1402.3394.

[19]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[20]  D. Croton,et al.  Where do ‘red and dead’ early-type void galaxies come from? , 2008, 0801.2771.

[21]  Modelling the galaxy bimodality: shutdown above a critical halo mass , 2006, astro-ph/0601295.

[22]  L. Kewley,et al.  ZFIRE: A KECK/MOSFIRE SPECTROSCOPIC SURVEY OF GALAXIES IN RICH ENVIRONMENTS AT z ∼ 2 , 2016, 1607.00013.

[23]  E. Bell Galaxy Bulges and their Black Holes: a Requirement for the Quenching of Star Formation , 2008, 0804.4001.

[24]  J. Newman,et al.  Dependence of galaxy quenching on halo mass and distance from its centre , 2012, 1203.1625.

[25]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[26]  Masayuki Tanaka,et al.  INTERNAL STRUCTURE OF PROTOCLUSTER GALAXIES: ACCELERATED STRUCTURAL EVOLUTION IN OVERDENSE ENVIRONMENTS? , 2011, 1110.0327.

[27]  J. Brinchmann,et al.  ON THE DEARTH OF COMPACT, MASSIVE, RED SEQUENCE GALAXIES IN THE LOCAL UNIVERSE , 2009, 0907.4766.

[28]  T. Oosterloo,et al.  A large H I cloud near the centre of the Virgo cluster , 2005, astro-ph/0505397.

[29]  R. Bower,et al.  Overconsumption, outflows and the quenching of satellite galaxies , 2014, 1404.6251.

[30]  B. Garilli,et al.  zCOSMOS 20k: satellite galaxies are the main drivers of environmental effects in the galaxy population at least to z ∼ 0.7 , 2013, 1307.4402.

[31]  I. Smail,et al.  The dependence of star formation activity on environment and stellar mass at z∼ 1 from the HiZELS-Hα survey , 2010, 1007.2642.

[32]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[33]  M. Blanton,et al.  A STELLAR MASS THRESHOLD FOR QUENCHING OF FIELD GALAXIES , 2012, 1206.3573.

[34]  A. V. D. Wel,et al.  Predicting Quiescence: The Dependence of Specific Star Formation Rate on Galaxy Size and Central Density at 0.5 < z < 2.5 , 2016, 1607.03107.

[35]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[36]  A. Dekel,et al.  Wet Disc Contraction to Galactic Blue Nuggets and Quenching to Red Nuggets , 2013, 1310.1074.

[37]  B. Garilli,et al.  The VIMOS VLT Deep Survey: The build-up of the colour-density relation , 2006, astro-ph/0603202.

[38]  A. Dekel,et al.  Bursting and quenching in massive galaxies without major mergers or AGNs , 2007, astro-ph/0703435.

[39]  H. Hoekstra,et al.  Evidence for a change in the dominant satellite galaxy quenching mechanism at z = 1. , 2015, 1511.07344.

[40]  Arizona,et al.  CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES AT z = 1.62 , 2011, 1110.3821.

[41]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[42]  M. Blanton,et al.  Physical properties and environments of nearby galaxies , 2009, 0908.3017.

[44]  J. Trump,et al.  Structural and Star-forming Relations since z ∼ 3: Connecting Compact Star-forming and Quiescent Galaxies , 2015, 1509.00469.

[45]  C. Lidman,et al.  Evidence for strong evolution in galaxy environmental quenching efficiency between z = 1.6 and z = 0.9 , 2016, 1610.08058.

[46]  Chien Y. Peng,et al.  STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS , 2012, 1211.6954.

[47]  H. Mo,et al.  The importance of satellite quenching for the build-up of the red sequence of present-day galaxies , 2007, 0710.3164.

[48]  J. Holtzman,et al.  THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. III. CHARACTERIZING QUENCHING IN LOW-MASS GALAXIES , 2015, 1503.05195.

[49]  C. Conselice,et al.  Galactic conformity and central/satellite quenching, from the satellite profiles of M* galaxies at 0.4 < z < 1.9 in the UKIDSS UDS , 2014, 1406.6058.

[50]  S. E. Persson,et al.  THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO z ∼ 3.5 , 2016, 1608.07579.

[51]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[52]  M. Boylan-Kolchin,et al.  Under pressure: quenching star formation in low-mass satellite galaxies via stripping , 2016, 1606.07810.

[53]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[54]  S. Faber,et al.  Two conditions for galaxy quenching: compact centres and massive haloes , 2014, 1406.5372.

[55]  Marc Davis,et al.  Galaxy Correlations as a Function of Morphological Type , 1975 .

[56]  Pin T. Ng,et al.  A fast and efficient implementation of qualitatively constrained quantile smoothing splines , 2007 .

[57]  R. Larson Effects of Supernovae on the Early Evolution of Galaxies , 1974 .

[58]  M. Donahue,et al.  Hα Tail, Intracluster H II Regions, and Star Formation: ESO 137-001 in Abell 3627 , 2007, 0706.1220.

[59]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[60]  C. Slater,et al.  THE MASS DEPENDENCE OF DWARF SATELLITE GALAXY QUENCHING , 2014, 1407.6006.

[61]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[62]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA) : growing up in a bad neighbourhood – how do low-mass galaxies become passive? , 2015, 1511.02245.

[63]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[64]  Marijn Franx,et al.  Structure and Star Formation in Galaxies out to z = 3: Evidence for Surface Density Dependent Evolution and Upsizing , 2008, 0808.2642.

[65]  P. Norberg,et al.  ZENS. IV. SIMILAR MORPHOLOGICAL CHANGES ASSOCIATED WITH MASS QUENCHING AND ENVIRONMENT QUENCHING AND THE RELATIVE IMPORTANCE OF BULGE GROWTH VERSUS THE FADING OF DISKS , 2014, 1402.1172.

[66]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[67]  C. Carollo,et al.  Evolution of density profiles in high-z galaxies: compaction and quenching inside-out , 2015, 1509.00017.

[68]  G. Lake,et al.  The Formation of Quasars in Low-Luminosity Hosts via Galaxy Harassment , 1997, astro-ph/9701212.

[69]  B. Garilli,et al.  The zCOSMOS 10k-sample: the role of galaxy stellar mass in the colour-density relation up to z ~ 1 , 2010, 1007.3841.

[70]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[71]  G. Kauffmann,et al.  A Re-examination of Galactic Conformity and a Comparison with Semi-analytic Models of Galaxy Formation , 2012, 1209.3306.

[72]  O. Fakhouri,et al.  Environmental dependence of dark matter halo growth – I. Halo merger rates , 2008, 0808.2471.

[73]  P. Hopkins,et al.  A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei , 2008, 0808.1227.

[74]  Jr. Oemler Augustus The Systematic Properties of Clusters of Galaxies. Photometry of 15 Clusters , 1974 .

[75]  Kansas,et al.  CANDELS OBSERVATIONS OF THE STRUCTURAL PROPERTIES OF CLUSTER GALAXIES AT z = 1.62 , 2011, 1110.3794.

[76]  Stefano Andreon,et al.  SPECTROSCOPIC CONFIRMATION OF THE RICH z = 1.80 GALAXY CLUSTER JKCS 041 USING THE WFC3 GRISM: ENVIRONMENTAL TRENDS IN THE AGES AND STRUCTURE OF QUIESCENT GALAXIES , 2013, 1310.6754.

[77]  H. Hoekstra,et al.  THE GEMINI CLUSTER ASTROPHYSICS SPECTROSCOPIC SURVEY (GCLASS): THE ROLE OF ENVIRONMENT AND SELF-REGULATION IN GALAXY EVOLUTION AT z ∼ 1 , 2011, 1112.3655.

[78]  O. I. Wong,et al.  The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early-and late-type galaxies , 2014, 1402.4814.

[79]  J. Tinker,et al.  WHAT DOES CLUSTERING TELL US ABOUT THE BUILDUP OF THE RED SEQUENCE? , 2009, 0909.1325.

[80]  O. Ilbert,et al.  NEWLY QUENCHED GALAXIES AS THE CAUSE FOR THE APPARENT EVOLUTION IN AVERAGE SIZE OF THE POPULATION , 2013, 1302.5115.

[81]  C. Conselice,et al.  Measures of Galaxy Environment I - What is "Environment"? , 2011, 1109.6328.

[82]  Major-merger Galaxy Pairs in the COSMOS Field—Mass-dependent Merger Rate Evolution since z = 1 , 2012 .

[83]  S. More,et al.  First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. I. The role of group or cluster environment in star formation quenching from z = 0.2 to 1.1 , 2017, 1704.06219.

[84]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[85]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[86]  G. Kauffmann,et al.  Environmental effects on satellite galaxies: the link between concentration, size and colour profile , 2008, 0809.2283.

[87]  S. Faber,et al.  A LINK BETWEEN STAR FORMATION QUENCHING AND INNER STELLAR MASS DENSITY IN SLOAN DIGITAL SKY SURVEY CENTRAL GALAXIES , 2013, 1308.5224.

[88]  E. Tollerud,et al.  The mass dependence of satellite quenching in Milky Way-like haloes , 2014, 1407.3276.

[89]  H. Hildebrandt,et al.  TRACING THE STAR-FORMATION–DENSITY RELATION TO z ∼ 2 , 2011, 1104.1426.

[90]  T. Treu,et al.  The Grism Lens-amplified Survey from Space (Glass). IX. The Dual Origin of Low-mass Cluster Galaxies as Revealed by New Structural Analyses , 2016, 1607.00384.

[91]  Marijn Franx,et al.  SIZES AND SURFACE BRIGHTNESS PROFILES OF QUIESCENT GALAXIES AT z ∼ 2 , 2011, 1111.3361.

[92]  G. Jogesh Babu,et al.  Modern Statistical Methods for Astronomy: With R Applications , 2012 .

[93]  Stijn Wuyts,et al.  WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE z ∼ 2 FROM CANDELS , 2011, 1110.3786.

[94]  Durham,et al.  Ram pressure stripping the hot gaseous haloes of galaxies in groups and clusters , 2007, 0710.0964.

[95]  P. Norberg,et al.  THE PAN-STARRS1 MEDIUM-DEEP SURVEY: THE ROLE OF GALAXY GROUP ENVIRONMENT IN THE STAR FORMATION RATE VERSUS STELLAR MASS RELATION AND QUIESCENT FRACTION OUT TO z ∼ 0.8 , 2013, 1312.4736.

[96]  S. E. Persson,et al.  THE SFR–M* RELATION AND EMPIRICAL STAR FORMATION HISTORIES FROM ZFOURGE AT 0.5 < z < 4 , 2015, 1510.06072.

[97]  C. Conselice,et al.  Evidence for a correlation between the sizes of quiescent galaxies and local environment to z ∼ 2 , 2013, 1307.3247.

[98]  E. Tollerud,et al.  A dichotomy in satellite quenching around L* galaxies , 2013, 1307.3552.

[99]  The DEEP2 galaxy redshift survey: evolution of the colour–density relation at 0.4 < z < 1.35 , 2006, astro-ph/0607512.

[100]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[101]  Carnegie,et al.  CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT z ∼ 2 , 2012, 1206.5000.

[102]  M. Peth,et al.  EVOLUTION OF STAR FORMATION PROPERTIES OF HIGH-REDSHIFT CLUSTER GALAXIES SINCE z = 2 , 2015, 1508.01294.

[103]  T. Tal,et al.  THE RELATION BETWEEN COMPACT, QUIESCENT HIGH-REDSHIFT GALAXIES AND MASSIVE NEARBY ELLIPTICAL GALAXIES: EVIDENCE FOR HIERARCHICAL, INSIDE-OUT GROWTH , 2009, 0903.2044.

[104]  B. Tinsley,et al.  The evolution of disk galaxies and the origin of S0 galaxies , 1980 .

[105]  The 2dF Galaxy Redshift Survey: Luminosity functions by density environment and galaxy type , 2005 .

[106]  Kraków,et al.  Ram pressure stripping of the multiphase ISM and star formation in the Virgo spiral galaxy NGC 4330 , 2011, 1111.5236.

[107]  R. Bender,et al.  Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at z ∼ 1–2 , 2016, 1611.07524.

[108]  C. Conselice,et al.  Absence of evidence is not evidence of absence: the colour–density relation at fixed stellar mass persists to z∼ 1 , 2010, 1007.1967.

[109]  Christopher J. Miller,et al.  Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS , 2003, astro-ph/0311379.

[110]  Leiden,et al.  Quenching massive galaxies with on-the-fly feedback in cosmological hydrodynamic simulations , 2010, 1012.3166.

[111]  K. Glazebrook,et al.  DIFFERENCES IN THE STRUCTURAL PROPERTIES AND STAR FORMATION RATES OF FIELD AND CLUSTER GALAXIES AT Z ∼ 1 , 2016, 1605.05314.

[112]  J. Loveday,et al.  Galaxy And Mass Assembly (GAMA): the effect of close interactions on star formation in galaxies , 2015, 1507.04447.

[113]  C. Carollo,et al.  The confinement of star-forming galaxies into a main sequence through episodes of gas compaction, depletion and replenishment , 2015, 1509.02529.

[114]  Michigan.,et al.  ZFOURGE/CANDELS: ON THE EVOLUTION OF M* GALAXY PROGENITORS FROM z = 3 TO 0.5 , 2014, 1412.3806.

[115]  M. Boylan-Kolchin,et al.  Taking care of business in a flash : constraining the time-scale for low-mass satellite quenching with ELVIS , 2015, 1503.06803.

[116]  S. Lilly,et al.  QUENCHING OF STAR FORMATION IN SLOAN DIGITAL SKY SURVEY GROUPS: CENTRALS, SATELLITES, AND GALACTIC CONFORMITY , 2014, 1408.2553.

[117]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .

[118]  C. Conselice,et al.  THE DEPENDENCE OF QUENCHING UPON THE INNER STRUCTURE OF GALAXIES AT 0.5 ⩽ z < 0.8 IN THE DEEP2/AEGIS SURVEY , 2012, 1210.4173.

[119]  Y. University,et al.  A TALE OF DWARFS AND GIANTS: USING A z = 1.62 CLUSTER TO UNDERSTAND HOW THE RED SEQUENCE GREW OVER THE LAST 9.5 BILLION YEARS , 2012, 1203.3541.

[120]  S. Wuyts,et al.  DENSE CORES IN GALAXIES OUT TO z = 2.5 IN SDSS, UltraVISTA, AND THE FIVE 3D-HST/CANDELS FIELDS , 2014, 1404.4874.

[121]  B. Mobasher,et al.  THE EFFECTS OF THE LOCAL ENVIRONMENT AND STELLAR MASS ON GALAXY QUENCHING TO z ∼ 3 , 2016, 1605.03182.

[122]  B. Garilli,et al.  THE 10k zCOSMOS: MORPHOLOGICAL TRANSFORMATION OF GALAXIES IN THE GROUP ENVIRONMENT SINCE z ∼1 , 2009, 0909.2032.

[123]  S. White,et al.  Galaxy formation in the Planck cosmology – I. Matching the observed evolution of star formation rates, colours and stellar masses , 2014, 1410.0365.

[124]  CANDELS Observations Of The Environmental Dependence Of The Color-Mass-Morphology Relation At Z=1.6 , 2013, 1305.0607.

[125]  H. Mo,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.

[126]  C. Conselice,et al.  Galaxy environments in the UKIDSS Ultra Deep Survey , 2011, 1101.0849.

[127]  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[128]  Carnegie,et al.  The SAGA Survey. I. Satellite Galaxy Populations around Eight Milky Way Analogs , 2017, 1705.06743.

[129]  Ram pressure stripping of spiral galaxies in clusters , 1999, astro-ph/9903436.

[130]  Jan T. Kleyna,et al.  The tidal stripping of satellites , 2005, astro-ph/0506687.

[131]  S. Faber,et al.  Satellite Quenching, Galaxy Inner Density and the Halo Environment , 2016, 1607.06091.