Consistency for the tree bootstrap in respondent-driven sampling

Summary Respondent-driven sampling is an approach for estimating features of populations that are difficult to access using standard survey tools, e.g., the fraction of injection drug users who are HIV positive. Baraff et al. (2016) introduced an approach to estimating uncertainty in population proportion estimates from respondent-driven sampling using the tree bootstrap method. In this paper we establish the consistency of this tree bootstrap approach in the case of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$m$\end{document}-trees.

[1]  H. White,et al.  “Structural Equivalence of Individuals in Social Networks” , 2022, The SAGE Encyclopedia of Research Design.

[2]  Yuling Yan,et al.  Asymptotic Seed Bias in Respondent-driven Sampling , 2018, ArXiv.

[3]  Karl Rohe A critical threshold for design effects in network sampling , 2019, The Annals of Statistics.

[4]  Tyler H McCormick,et al.  Estimating uncertainty in respondent-driven sampling using a tree bootstrap method , 2016, Proceedings of the National Academy of Sciences.

[5]  Forrest W. Crawford The Graphical Structure of Respondent-driven Sampling , 2014, Sociological methodology.

[6]  Karl Rohe,et al.  Central limit theorems for network driven sampling , 2015, 1509.04704.

[7]  Mark S Handcock,et al.  Network model‐assisted inference from respondent‐driven sampling data , 2011, Journal of the Royal Statistical Society. Series A,.

[8]  Matthew J. Salganik,et al.  Assessing respondent-driven sampling , 2010, Proceedings of the National Academy of Sciences.

[9]  Mark S Handcock,et al.  7. Respondent-Driven Sampling: An Assessment of Current Methodology , 2009, Sociological methodology.

[10]  S. Azin AN OVERVIEW ON THE 2008 UNAIDS REPORT ON THE GLOBAL AIDS EPIDEMIC , 2010 .

[11]  Matthew J. Salganik,et al.  Respondent‐driven sampling as Markov chain Monte Carlo , 2009, Statistics in medicine.

[12]  Erik M. Volz,et al.  Probability based estimation theory for respondent driven sampling , 2008 .

[13]  Matthew J. Salganik,et al.  5. Sampling and Estimation in Hidden Populations Using Respondent-Driven Sampling , 2004 .

[14]  Douglas D. Heckathorn,et al.  Respondent-driven sampling : A new approach to the study of hidden populations , 1997 .

[15]  Yuval Peres,et al.  Markov chains indexed by trees , 1994 .

[16]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[17]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .