The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations

We describe Global Atmosphere 6.0 and Global Land 6.0 (GA6.0/GL6.0): the latest science configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) land surface model developed for use across all timescales. Global Atmosphere 6.0 includes the ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment) dynamical core, which significantly increases mid-latitude variability improving a known model bias. Alongside developments of the model’s physical parametrisations, ENDGame also increases variability in the tropics, which leads to an improved representation of tropical cyclones and other tropical phenomena. Further developments of the atmospheric and land surface parametrisations improve other aspects of model performance, including the forecasting of surface weather phenomena. We also describe GA6.1/GL6.1, which includes a small number of long-standing differences from our main trunk configurations that we continue to require for operational global weather prediction. Since July 2014, GA6.1/GL6.1 has been used by the Met Office for operational global numerical weather prediction, whilst GA6.0/GL6.0 was implemented in its remaining global prediction systems over the following year. Copyright statement. The works published in this journal are distributed under the Creative Commons Attribution 3.0 License. This license does not affect the Crown copyright work, which is re-usable under the Open Government Licence (OGL). The Creative Commons Attribution 3.0 License and the OGL are interoperable and do not conflict with, reduce or limit each other. © Crown copyright 2017

[1]  John H. C. Gash,et al.  Improving the representation of radiation interception and photosynthesis for climate model applications , 2007 .

[2]  G. Rooney,et al.  Coupling the 1-D lake model FLake to the community land-surface model JULES , 2010 .

[3]  B. Hicks,et al.  Flux‐gradient relationships in the constant flux layer , 1970 .

[4]  Mountain waves and wakes generated by South Georgia: implications for drag parametrization , 2014 .

[5]  A. Grant,et al.  Cloud‐base fluxes in the cumulus‐capped boundary layer , 2001 .

[6]  D. Stevenson,et al.  The Global Distribution of Secondary Particulate Matter in a 3-D Lagrangian Chemistry Transport Model , 2003 .

[7]  Kevin I. Hodges,et al.  Feature Tracking on the Unit Sphere , 1995 .

[8]  J. Haigh,et al.  An efficient and accurate correlated‐k parameterization of infrared radiative transfer for troposphere–stratosphere–mesosphere GCMs , 2000 .

[9]  R. Betts,et al.  The impact of climate change on global river flow in HadGEM1 simulations , 2006 .

[10]  James Manners,et al.  Reducing noise associated with the Monte Carlo Independent Column Approximation for weather forecasting models , 2011 .

[11]  M. Best,et al.  Representing urban areas within operational numerical weather prediction models , 2005 .

[12]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[13]  J. Fritsch,et al.  Numerical Prediction of Convectively Driven Mesoscale Pressure Systems. Part I: Convective Parameterization , 1980 .

[14]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[15]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics , 2011 .

[16]  Randy Bullock,et al.  Feature-Based Diagnostic Evaluation of Global NWP Forecasts , 2016 .

[17]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[18]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[19]  Veronika Eyring,et al.  Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing , 2011 .

[20]  Paul Berrisford,et al.  The ERA-Interim Archive , 2009 .

[21]  D. L. Roberts,et al.  A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols , 1994, Nature.

[22]  C. Brenninkmeijer,et al.  Processes controlling water vapor in the upper troposphere/lowermost stratosphere: An analysis of 8 years of monthly measurements by the IAGOS‐CARIBIC observatory , 2014 .

[23]  F. Doblas-Reyes,et al.  An Evaluation Metric for Intraseasonal Variability and its Application to CMIP3 Twentieth-Century Simulations , 2010 .

[24]  Nigel Wood,et al.  A monotonically‐damping second‐order‐accurate unconditionally‐stable numerical scheme for diffusion , 2007 .

[25]  E. Maloney,et al.  The Sensitivity of Intraseasonal Variability in the NCAR CCM3 to Changes in Convective Parameterization , 2001 .

[26]  William R. Cotton,et al.  A Numerical Investigation of Several Factors Contributing to the Observed Variable Intensity of Deep Convection over South Florida , 1980 .

[27]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[28]  Cyril J. Morcrette,et al.  PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations , 2008 .

[29]  R. Andres,et al.  A time‐averaged inventory of subaerial volcanic sulfur emissions , 1998 .

[30]  T. N. Krishnamurti,et al.  Daily Indian Precipitation Analysis Formed from a Merge of Rain-Gauge Data with the TRMM TMPA Satellite-Derived Rainfall Estimates , 2009 .

[31]  J. M. Edwards Efficient Calculation of Infrared Fluxes and Cooling Rates Using the Two-Stream Equations , 1996 .

[32]  D. N. Walters,et al.  Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model , 2014 .

[33]  William H. Lipscomb,et al.  Evaluation of the sea ice simulation in a new coupled atmosphere‐ocean climate model (HadGEM1) , 2006 .

[34]  Zhanqing Li,et al.  Improved Simulation of Clear-Sky Shortwave Radiative Transfer in the CCC-GCM , 1995 .

[35]  A. Keen,et al.  Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model , 2015 .

[36]  Douglas A. Miller,et al.  A Conterminous United States Multilayer Soil Characteristics Dataset for Regional Climate and Hydrology Modeling , 1998 .

[37]  J. King,et al.  On the effective aerodynamic and scalar roughness length of Weddell Sea ice , 2011 .

[38]  B. Shipway,et al.  A comparison of cloud‐resolving model simulations of trade wind cumulus with aircraft observations taken during RICO , 2007 .

[39]  C. Morcrette Improvements to a prognostic cloud scheme through changes to its cloud erosion parametrization , 2012 .

[40]  Cyril J. Morcrette,et al.  PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description , 2008 .

[41]  M. Diamantakis,et al.  An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretization of the deep‐atmosphere global non‐hydrostatic equations , 2014 .

[42]  Martin Wild,et al.  The radiative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM , 1998 .

[43]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[44]  J. S. Godfrey,et al.  On the turbulent fluxes of buoyancy, heat and moisture at the air-sea interface at low wind speeds , 1991 .

[45]  S. Abel,et al.  Evaluation of stratocumulus cloud prediction in the Met Office forecast model during VOCALS-REx , 2010 .

[46]  Matthew C. Wheeler,et al.  Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain , 1999 .

[47]  Richard Essery,et al.  Explicit representation of subgrid heterogeneity in a GCM land surface scheme , 2003 .

[48]  Nigel Wood,et al.  Treatment of vector equations in deep‐atmosphere, semi‐Lagrangian models. II: Kinematic equation , 2010 .

[49]  A. Priestley A Quasi-Conservative Version of the Semi-Lagrangian Advection Scheme , 1993 .

[50]  A. Simmons,et al.  Implementation of the Semi-Lagrangian Method in a High-Resolution Version of the ECMWF Forecast Model , 1995 .

[51]  S. Schubert,et al.  Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs , 2008 .

[52]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[53]  François Lott,et al.  A new subgrid‐scale orographic drag parametrization: Its formulation and testing , 1997 .

[54]  Giacomo R. DiTullio,et al.  A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month , 1999 .

[55]  P. R. Julian,et al.  Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific , 1971 .

[56]  Lizzie S. R. Froude TIGGE: Comparison of the Prediction of Northern Hemisphere Extratropical Cyclones by Different Ensemble Prediction Systems , 2011 .

[57]  S. Vosper,et al.  Accounting for non‐uniform static stability in orographic drag parametrization , 2009 .

[58]  C. J. Morcrette,et al.  Geoscientific Model Development The Met Office Unified Model Global Atmosphere 3 . 0 / 3 . 1 and JULES Global Land 3 . 0 / 3 . 1 configurations , 2011 .

[59]  D. Gregory,et al.  Parametrization of momentum transport by convection. II: Tests in single‐column and general circulation models , 1997 .

[60]  Mingquan Mu,et al.  Simulation of the Madden–Julian Oscillation in the NCAR CCM3 Using a Revised Zhang–McFarlane Convection Parameterization Scheme , 2005 .

[61]  J. Crowther,et al.  Investigating k distribution methods for parameterizing gaseous absorption in the Hadley Centre Climate Model , 1999 .

[62]  P. Xavier Intraseasonal Convective Moistening in CMIP3 Models , 2012 .

[63]  Michael E. Schlesinger,et al.  The Dependence on Convection Parameterization of the Tropical Intraseasonal Oscillation Simulated by the UIUC 11-Layer Atmospheric GCM , 1999 .

[64]  C. Epifanio,et al.  Wave-Turbulence Interactions in a Breaking Mountain Wave , 2008 .

[65]  N. Phillips,et al.  NUMERICAL INTEGRATION OF THE QUASI-GEOSTROPHIC EQUATIONS FOR BAROTROPIC AND SIMPLE BAROCLINIC FLOWS , 1953 .

[66]  Anne Verhoef,et al.  New soil physical properties implemented in the Unified Model at PS18 , 2009 .

[67]  Peter R. J. North,et al.  New Vegetation Albedo Parameters and Global Fields of Soil Background Albedo Derived from MODIS for Use in a Climate Model , 2009 .

[68]  M. Monsi Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion , 1953 .

[69]  D. N. Walters,et al.  The Met Office Global Coupled model 2.0 (GC2) configuration , 2015 .

[70]  Gill Martin,et al.  The effect of increased convective entrainment on Asian monsoon biases in the MetUM general circulation model , 2014 .

[71]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[72]  A. Brown,et al.  A similarity hypothesis for shallow‐cumulus transports , 1999 .

[73]  N. Batjes Harmonized soil profile data for applications at global and continental scales: updates to the WISE database , 2009 .

[74]  I. Kang,et al.  A bulk mass flux convection scheme for climate model: description and moisture sensitivity , 2011, Climate Dynamics.

[75]  A. Lock The Numerical Representation of Entrainment in Parameterizations of Boundary Layer Turbulent Mixing , 2001 .

[76]  Nigel Roberts,et al.  Radiative transfer over resolved topographic features for high‐resolution weather prediction , 2012 .

[77]  J. Heming Met Office Unified Model Tropical Cyclone Performance Following Major Changes to the Initialization Scheme and a Model Upgrade , 2016 .

[78]  M. McIntyre,et al.  An Ultrasimple Spectral Parameterization for Nonorographic Gravity Waves , 2001 .

[79]  R. Smith A scheme for predicting layer clouds and their water content in a general circulation model , 1990 .

[80]  Judith Lean,et al.  Evolution of the Sun's Spectral Irradiance Since the Maunder Minimum , 2000 .

[81]  I. Boutle,et al.  An improved representation of the raindrop size distribution for single‐moment microphysics schemes , 2012 .

[82]  Richard Swinbank,et al.  Impact of a Spectral Gravity Wave Parameterization on the Stratosphere in the Met Office Unified Model , 2002 .

[83]  A. Brown,et al.  The role of surface heterogeneity in modelling the stable boundary layer , 2007 .

[84]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[85]  S. A. Clough,et al.  Recent Developments in the Water Vapor Continuum , 1999 .

[86]  Daehyun Kim,et al.  MJO and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models , 2013 .

[87]  H. Velthuizen,et al.  Harmonized World Soil Database (version 1.2) , 2008 .

[88]  Sean Milton,et al.  Adaptive detrainment in a convective parametrization , 2011 .

[89]  Damian R. Wilson,et al.  A microphysically based precipitation scheme for the UK meteorological office unified model , 1999 .

[90]  P. Rowntree,et al.  A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure , 1990 .

[91]  Andrew S. Jones,et al.  Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle , 2001 .

[92]  E. Maloney,et al.  A Systematic Relationship between Intraseasonal Variability and Mean State Bias in AGCM Simulations , 2011 .

[93]  D. N. Walters,et al.  Upgrades to the Boundary-Layer Scheme in the Met Office Numerical Weather Prediction Model , 2008 .

[94]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[95]  Jean-Claude Thelen,et al.  Two fast radiative transfer methods to improve the temporal sampling of clouds in numerical weather prediction and climate models , 2009 .

[96]  Peter R. J. North,et al.  The ESA GlobAlbedo Project for mapping the Earth's land surface albedo for 15 Years from European Sensors. , 2012, IGARSS 2012.

[97]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[98]  P. Bernath,et al.  The relation between atmospheric humidity and temperature trends for stratospheric water , 2013 .

[99]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[100]  Stephan Havemann,et al.  A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM , 2007 .

[101]  Peter M. Cox,et al.  The Sensitivity of Global Climate Model Simulations to the Representation of Soil Moisture Heterogeneity , 2003 .

[102]  Damian R. Wilson,et al.  A description of cloud production by non‐uniformly distributed processes , 2003 .

[103]  Duane E. Waliser,et al.  Intraseasonal Variability in the Atmosphere-Ocean Climate System , 2005 .

[104]  N. Wood,et al.  The Pressure force induced by neutral, turbulent flow over hills , 1993 .

[105]  E. L. Andreas A relationship between the aerodynamic and physical roughness of winter sea ice , 2011 .

[106]  Adam A. Scaife,et al.  Geoscientific Model Development The Met Office Unified Model Global Atmosphere 3 . 0 / 3 . 1 and JULES Global Land 3 . 0 / 3 . 1 configurations , 2011 .

[107]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[108]  S. Woolnough,et al.  Using a case‐study approach to improve the Madden–Julian oscillation in the Hadley Centre model , 2014 .

[109]  A. Gemant The Thermal Conductivity of Soils , 1950 .

[110]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[111]  U. Lohmann,et al.  Introduction of prognostic rain in ECHAM5: design and single column model simulations , 2007 .

[112]  J. Haigh,et al.  Influence of the prescribed solar spectrum on calculations of atmospheric temperature , 2008 .

[113]  N. Abraham,et al.  Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models , 2015 .

[114]  A. Bodas‐Salcedo,et al.  A multi-diagnostic approach to cloud evaluation , 2016 .

[115]  S. Nicholls The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model , 1984 .

[116]  O. Boucher,et al.  Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2‐ES and the role of ammonium nitrate , 2011 .

[117]  Albert A. M. Holtslag,et al.  Flux Parameterization over Land Surfaces for Atmospheric Models , 1991 .

[118]  C. J. Morcrette,et al.  The Met Office Unified Model Global Atmosphere 4 . 0 and JULES Global Land 4 . 0 configurations , 2013 .

[119]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[120]  Stuart Webster,et al.  Improvements to the representation of orography in the Met Office Unified Model , 2003 .

[121]  John M. Edwards,et al.  Oceanic latent heat fluxes: Consistency with the atmospheric hydrological and energy cycles and general circulation modeling , 2007 .