Blur resolved OCT: full-range interferometric synthetic aperture microscopy through dispersion encoding

We present a computational method for full-range interferometric synthetic aperture microscopy (ISAM) under dispersion encoding. With this, one can effectively double the depth range of optical coherence tomography (OCT), whilst dramatically enhancing the spatial resolution away from the focal plane. To this end, we propose a model-based iterative reconstruction (MBIR) method, where ISAM is directly considered in an optimization approach, and we make the discovery that sparsity promoting regularization effectively recovers the full-range signal. Within this work, we adopt an optimal nonuniform discrete fast Fourier transform (NUFFT) implementation of ISAM, which is both fast and numerically stable throughout iterations. We validate our method with several complex samples, scanned with a commercial SD-OCT system with no hardware modification. With this, we both demonstrate full-range ISAM imaging, and significantly outperform combinations of existing methods. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

[1]  R. Stolt MIGRATION BY FOURIER TRANSFORM , 1978 .

[2]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[3]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[4]  J. Fujimoto,et al.  Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. , 2000, Neoplasia.

[5]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[6]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[7]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[8]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[9]  R. Leitgeb,et al.  High speed full range complex spectral domain optical coherence tomography. , 2005, Optics express.

[10]  Daniel L Marks,et al.  Inverse scattering for optical coherence tomography. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[12]  Richard G. Baraniuk,et al.  Sparse Signal Detection from Incoherent Projections , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[13]  Daniel L Marks,et al.  Inverse scattering for high-resolution interferometric microscopy. , 2006, Optics letters.

[14]  Ruikang K. Wang,et al.  Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography. , 2007, Optics letters.

[15]  Daniel L Marks,et al.  Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy. , 2007, Optics letters.

[16]  Daniel L Marks,et al.  Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  S. Boppart,et al.  Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy , 2008, Sensors.

[18]  Shoude Chang,et al.  3x3 Mach-Zehnder interferometer with unbalanced differential detection for full-range swept-source optical coherence tomography. , 2008, Applied optics.

[19]  Daniel L Marks,et al.  Real-time interferometric synthetic aperture microscopy. , 2008, Optics express.

[20]  Daniel L Marks,et al.  Interferometric Synthetic Aperture Microscopy , 2007, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[21]  W. Drexler,et al.  Dispersion encoded full range frequency domain optical coherence tomography. , 2009, Optics express.

[22]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[23]  E. Peterman,et al.  Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control. , 2009, Optics express.

[24]  Bahaa E. A. Saleh,et al.  Compressed sensing in optical coherence tomography , 2010, BiOS.

[25]  Gerald Matz,et al.  Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm. , 2010, Optics express.

[26]  Robert J Zawadzki,et al.  Comparison of phase-shifting techniques for in vivo full-range, high-speed Fourier-domain optical coherence tomography. , 2010, Journal of biomedical optics.

[27]  Jin U. Kang,et al.  Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography , 2010, Optics express.

[28]  Mike E. Davies,et al.  Advanced image formation and processing of partial synthetic aperture radar data , 2012, IET Signal Process..

[29]  Edmund Koch,et al.  An advanced algorithm for dispersion encoded full range frequency domain optical coherence tomography. , 2012, Optics express.

[30]  Mike E. Davies,et al.  RFI suppression and sparse image formation for UWB SAR , 2013, 2013 14th International Radar Symposium (IRS).

[31]  Richard G. Baraniuk,et al.  A Field Guide to Forward-Backward Splitting with a FASTA Implementation , 2014, ArXiv.

[32]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[33]  D. Sampson,et al.  The emergence of optical elastography in biomedicine , 2017, Nature Photonics.

[34]  Luying Yi,et al.  Full-depth compressive sensing spectral-domain optical coherence tomography based on a compressive dispersion encoding method. , 2018, Applied optics.

[35]  Pierre O. Bagnaninchi,et al.  Model-based iterative reconstruction for spectral-domain optical coherence tomography , 2019, BiOS.