Effect of Perforated Plates on the Acoustics of Annular Combustors

This paper aims to show the influence of perforated plates on the acoustic modes in aeronautical gas turbine combustion chambers. The analytical model was implemented in a three-dimensional acoustic Helmholtz solver to account for the effect of perforated plates. First, an analytic test case is used to validate the coding in the acoustic solver. Then, a computation of the acoustic modes in an actual industrial chamber is conducted, taking into account the perforated liners. For both cases, a study of the influence of the bias flow speed is conducted. The acoustic energy budget is also used to evaluate the respective contributions of the perforated plates. In the case of the industrial chamber, some plates are proved to be more effective than the others, depending on the mode structure.

[1]  Walter Eversman,et al.  High Amplitude Acoustic Transmission Through Duct Terminations: Theory , 1983 .

[2]  Sheryl M. Grace,et al.  The influence of shape on the rayleigh conductivity of a wall aperture in the presence of grazing flow , 1998 .

[3]  F. Nicoud,et al.  Acoustic modes in combustors with complex impedances and multidimensional active flames , 2007 .

[4]  M. S. Howe,et al.  The influence of tangential mean flow on the Rayleigh conductivity of an aperture , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  G. Boudiera,et al.  Thermo-acoustic stability of a helicopter gas turbine combustor using Large Eddy Simulation , 2008 .

[6]  Tim Lieuwen,et al.  Combustion Instabilities In Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling , 2006 .

[7]  Xiaodong Jing,et al.  Effect of Plate Thickness on Impedance of Perforated Plates with Bias Flow , 1999 .

[8]  T. Schuller,et al.  Damping combustion instabilities with perforates at the premixer inlet of a swirled burner , 2009 .

[9]  Thierry Poinsot,et al.  Large Eddy Simulation of self excited azimuthal modes in annular combustors , 2009 .

[10]  Heng Yang,et al.  Damping caused by the gas flow in the holes of perforated structures , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[11]  Krishnan Mahesh,et al.  Large-Eddy Simulation of Reacting Turbulent Flows in Complex Geometries , 2006 .

[12]  Claude Sensiau,et al.  Effect of multiperforated plates on the acoustic modes in combustors , 2009 .

[13]  R. Rayleigh The Theory of Sound, Two Volumes In One , 1945 .

[14]  Jeff D. Eldredge,et al.  Acoustic modeling of perforated plates with bias flow for Large-Eddy Simulations , 2009, J. Comput. Phys..

[15]  A. Cummings Acoustic nonlinearities and power losses at orifices , 1984 .

[16]  Bruno Schuermans,et al.  Investigation of azimuthal staging concepts in annular gas turbines , 2011 .

[17]  Y. Aurégana,et al.  Measurement of the nonlinear behavior of acoustical rigid porous materials , 1999 .

[18]  Thierry Poinsot,et al.  Thermo-Acoustic Stability of a Helicopter Gas Turbine Combustor Using Large Eddy Simulation , 2009 .

[19]  Nicolas Tran Influence de la condition limite acoustique amont sur les instabilités de combustion de grande amplitude : conception d’un système robuste de contrôle d’impédance , 2009 .

[20]  F. Nicoud,et al.  A Tool to Study Azimuthal Standing and Spinning Modes in Annular Combustors , 2009 .

[21]  U. Ingard,et al.  Acoustic Nonlinearity of an Orifice , 1967 .

[22]  T. Poinsot,et al.  System identification of a large-scale swirled partially premixed combustor using LES and measurements , 2005 .

[23]  M. S. Howe Acoustics of fluid-structure interactions , 1998 .

[24]  D. W. Bechert,et al.  Sound absorption caused by vorticity shedding, demonstrated with a jet flow☆ , 1980 .

[25]  R. Koch,et al.  Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes , 2004 .

[26]  A. Dowling,et al.  The absorption of sound by perforated linings , 1990, Journal of Fluid Mechanics.

[27]  S. Candel,et al.  A unified framework for nonlinear combustion instability analysis based on the flame describing function , 2008, Journal of Fluid Mechanics.

[28]  T. Poinsot,et al.  Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner , 2007, Journal of Fluid Mechanics.

[29]  Parviz Moin,et al.  Large-Eddy Simulation of Realistic Gas Turbine Combustors , 2004 .

[30]  T. Schuller,et al.  Passive Control of the Inlet Acoustic Boundary of a Swirled Burner at High Amplitude Combustion Instabilities , 2009 .

[31]  Michael S. Howe,et al.  On the rayleigh conductivity of a bias-flow aperture , 2005 .

[32]  Franck Nicoud,et al.  Adiabatic Homogeneous Model for Flow Around a Multiperforated Plate , 2008 .

[33]  Franck Nicoud,et al.  Large-eddy simulation and acoustic analysis of a swirled staged turbulent combustor , 2006 .

[34]  F. Nicoud,et al.  Joint use of compressible large-eddy simulation and Helmholtz solvers for the analysis of rotating modes in an industrial swirled burner , 2006 .

[35]  P. D. Dean,et al.  On the “In-Situ” Control of Acoustic Liner Attenuation , 1977 .

[36]  T. H. Melling,et al.  The acoustic impendance of perforates at medium and high sound pressure levels , 1973 .

[37]  Zhang Hou Effect of Grazing-Bias Flow Interaction on Acoustic Impedance of Perforated Plates , 2002 .

[38]  M. S. Howe,et al.  On the theory of unsteady high Reynolds number flow through a circular aperture , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  Claude Sensiau,et al.  Investigating the ThermoAcoustic Stability of a Real Gas Turbine Combustion Chamber Using Large-Eddy Simulations , 2007 .

[40]  D. Blackstock Fundamentals of Physical Acoustics , 2000 .

[41]  Jerome Hebrard,et al.  Spatial development of turbulent flow within a heated duct , 2005 .

[42]  Xiaodong Jing,et al.  Effect of Plate Thickness on Impedance of Perforated Plates with Bias Flow , 2000 .

[43]  Franck Nicoud,et al.  Large-eddy simulation of a bi-periodic turbulent flow with effusion , 2008, Journal of Fluid Mechanics.

[44]  M. S. Howe Acoustics of Fluid–Structure Interactions: Index , 1998 .

[45]  Bruno Schuermans,et al.  Non-Linear Combustion Instabilities in Annular Gas-Turbine Combustors , 2006 .

[46]  Thierry Poinsot,et al.  Massively parallel LES of azimuthal thermo-acoustic instabilities in annular gas turbines , 2009 .

[47]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .