Dark matter cores all the way down

We use high-resolution simulations of isolated dwarf galaxies to study the physics of dark matter cusp-core transformations at the edge of galaxy formation: M200 = 107-109 M⊙. We work at a resolution (~4 pc minimum cell size; ~250 M⊙ per particle) at which the impact from individual supernovae explosions can be resolved, becoming insensitive to even large changes in our numerical 'sub-grid' parameters. We find that our dwarf galaxies give a remarkable match to the stellar light profile; star formation history; metallicity distribution function; and star/gas kinematics of isolated dwarf irregular galaxies. Our key result is that dark matter cores of size comparable to the stellar half-mass radius r1/2 always form if star formation proceeds for long enough. Cores fully form in less than 4 Gyr for the M200 = 108 M⊙ and ~14 Gyr for the 109 M⊙ dwarf. We provide a convenient two parameter 'coreNFW' fitting function that captures this dark matter core growth as a function of star formation time and the projected stellar half-mass radius. Our results have several implications: (i) we make a strong prediction that if Λcold dark matter is correct, then 'pristine' dark matter cusps will be found either in systems that have truncated star formation and/or at radii r > r1/2; (ii) complete core formation lowers the projected velocity dispersion at r1/2 by a factor of ~2, which is sufficient to fully explain the 'too-big-to-fail problem'; and (iii) cored dwarfs will be much more susceptible to tides, leading to a dramatic scouring of the sub-halo mass function inside galaxies and groups. (Less)

[1]  Gregory D. Martinez,et al.  Accurate masses for dispersion-supported galaxies , 2009, 0908.2995.

[2]  Simulations of Early Structure Formation: Primordial Gas Clouds , 2003, astro-ph/0301645.

[3]  R. Bender,et al.  DWARF GALAXY DARK MATTER DENSITY PROFILES INFERRED FROM STELLAR AND GAS KINEMATICS , 2014, 1405.4854.

[4]  R. Teyssier,et al.  GLOBULAR CLUSTER FORMATION WITHIN A COSMOLOGICAL CONTEXT , 2009, The Astrophysical Journal.

[5]  J. Bregman,et al.  Global Models of the Interstellar Medium in Disk Galaxies , 1995 .

[6]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[7]  F. Nakamura,et al.  On the Initial Mass Function of Population III Stars , 2000, astro-ph/0010464.

[8]  L. Moustakas,et al.  Cold Dark Matter Substructure and Galactic Disks. I. Morphological Signatures of Hierarchical Satellite Accretion , 2007, 0708.1949.

[9]  Halo Cores and Phase-Space Densities: Observational Constraints on Dark Matter Physics and Structure Formation , 2000, astro-ph/0004381.

[10]  J. Read,et al.  Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future gamma-ray observatories - I. The classical dSphs , 2011, 1104.0412.

[11]  Stellar Populations and the Local Group Membership of the Dwarf Galaxy DDO 210 , 1999, astro-ph/9905060.

[12]  A. Helmi,et al.  Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky Way , 2013, 1305.5965.

[13]  The stellar content of the isolated transition dwarf galaxy DDO210 , 2006, astro-ph/0609237.

[14]  U. California,et al.  The distribution and kinematics of early high-σ peaks in present-day haloes: implications for rare objects and old stellar populations , 2005, astro-ph/0506615.

[15]  K. Gebhardt,et al.  VARIATIONS IN A UNIVERSAL DARK MATTER PROFILE FOR DWARF SPHEROIDALS , 2013, 1309.2637.

[16]  Jan T. Kleyna,et al.  The tidal stripping of satellites , 2005, astro-ph/0506687.

[17]  Andreas Burkert,et al.  Re-examining the Too-Big-To-Fail Problem for Dark Matter Haloes with Central Density Cores , 2014, 1408.6444.

[18]  Caltech,et al.  The dynamics of isolated Local Group galaxies , 2014, 1401.1208.

[19]  University of California,et al.  Globular clusters, satellite galaxies and stellar haloes from early dark matter peaks , 2005, astro-ph/0510370.

[20]  H. Ferguson,et al.  THE ACS LCID PROJECT. X. THE STAR FORMATION HISTORY OF IC 1613: REVISITING THE OVER-COOLING PROBLEM , 2014, 1403.4609.

[21]  Nickolay Y. Gnedin,et al.  ENVIRONMENTAL DEPENDENCE OF THE KENNICUTT–SCHMIDT RELATION IN GALAXIES , 2010, 1004.0003.

[22]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[23]  N. Gnedin Effect of Reionization on Structure Formation in the Universe , 2000, astro-ph/0002151.

[24]  J. Makino,et al.  Toward First-Principle Simulations of Galaxy Formation: I. How Should We Choose Star-Formation Criteria in High-Resolution Simulations of Disk Galaxies? , 2008, 0802.0961.

[25]  G. Lake,et al.  Tidal Stirring and the Origin of Dwarf Spheroidals in the Local Group , 2000, astro-ph/0011041.

[26]  C. McKee,et al.  THE STAR FORMATION LAW IN ATOMIC AND MOLECULAR GAS , 2009, 0904.0009.

[27]  N. Amorisco,et al.  DARK MATTER CORES IN THE FORNAX AND SCULPTOR DWARF GALAXIES: JOINING HALO ASSEMBLY AND DETAILED STAR FORMATION HISTORIES , 2013, 1309.5958.

[28]  C. Frenk,et al.  The Aquarius Project : the subhalos of galactic halos , 2008 .

[29]  G. Kauffmann Quantitative constraints on starburst cycles in galaxies with stellar masses in the range 10(8)–10(10) M⊙ , 2014, 1401.8091.

[30]  J. Peñarrubia,et al.  A METHOD FOR MEASURING (SLOPES OF) THE MASS PROFILES OF DWARF SPHEROIDAL GALAXIES , 2011, 1108.2404.

[31]  F. Villaescusa-Navarro,et al.  Cores and cusps in warm dark matter halos , 2010, 1010.3008.

[32]  J. Holtzman,et al.  THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. II. SEARCHING FOR SIGNATURES OF REIONIZATION , 2014, 1405.3281.

[33]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[34]  The link between mass distribution and starbursts in dwarf galaxies , 2015 .

[35]  A. Agnello,et al.  A VIRIAL CORE IN THE SCULPTOR DWARF SPHEROIDAL GALAXY , 2012, 1205.6673.

[36]  R. Benton Metcalf,et al.  Flux Ratios as a Probe of Dark Substructures in Quadruple-Image Gravitational Lenses , 2001, astro-ph/0111427.

[37]  B. Draine,et al.  LINE OVERLAP AND SELF-SHIELDING OF MOLECULAR HYDROGEN IN GALAXIES , 2014, 1406.4129.

[38]  Leo A: A late-blooming survivor of the epoch of reionization in the local group , 2007, astro-ph/0702646.

[39]  J. Read,et al.  The mass distribution of the Fornax dSph: Constraints from its globular cluster distribution , 2012, 1205.6327.

[40]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[41]  Megan C. Johnson,et al.  HIGH-RESOLUTION MASS MODELS OF DWARF GALAXIES FROM LITTLE THINGS , 2015, 1502.01281.

[42]  John Dubinski,et al.  The structure of cold dark matter halos , 1991 .

[43]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[44]  B. Moore,et al.  Cores in warm dark matter haloes: a Catch 22 problem , 2012, 1202.1282.

[45]  A. Kravtsov On the Origin of the Global Schmidt Law of Star Formation , 2003, astro-ph/0303240.

[46]  N. Murray STAR FORMATION EFFICIENCIES AND LIFETIMES OF GIANT MOLECULAR CLOUDS IN THE MILKY WAY , 2010, 1007.3270.

[47]  B. Willman,et al.  BARYONS MATTER: WHY LUMINOUS SATELLITE GALAXIES HAVE REDUCED CENTRAL MASSES , 2012, 1207.0007.

[48]  S. More,et al.  Effects of baryon removal on the structure of dwarf spheroidal galaxies , 2012, 1212.6651.

[49]  R. Teyssier,et al.  On the onset of galactic winds in quiescent star forming galaxies , 2007, 0707.3376.

[50]  P. Hopkins,et al.  The meaning and consequences of star formation criteria in galaxy models with resolved stellar feedback , 2013, 1303.0285.

[51]  N. Evans,et al.  STAR FORMATION RELATIONS IN NEARBY MOLECULAR CLOUDS , 2014, 1401.3287.

[52]  Romain Teyssier,et al.  A simple multigrid scheme for solving the Poisson equation with arbitrary domain boundaries , 2011, J. Comput. Phys..

[53]  L. Mayer,et al.  HOW TO MAKE AN ULTRA-FAINT DWARF SPHEROIDAL GALAXY: TIDAL STIRRING OF DISKY DWARFS WITH SHALLOW DARK MATTER DENSITY PROFILES , 2012, 1201.5784.

[54]  J. Blondin,et al.  Transition to the Radiative Phase in Supernova Remnants , 1998 .

[55]  Maximum feedback and dark matter profiles of dwarf galaxies , 2001, astro-ph/0108108.

[56]  Masayuki Umemura,et al.  Formation of Dwarf Galaxies during the Cosmic Reionization , 2003 .

[57]  H. Ferguson,et al.  THE ACS LCID PROJECT. V. THE STAR FORMATION HISTORY OF THE DWARF GALAXY LGS-3: CLUES TO COSMIC REIONIZATION AND FEEDBACK , 2011, 1101.5762.

[58]  M. Fairbairn,et al.  On the dark matter profile in Sculptor: breaking the β degeneracy with Virial shape parameters , 2014, 1401.6195.

[59]  J. Chiang,et al.  SEARCH FOR GAMMA-RAY EMISSION FROM DES DWARF SPHEROIDAL GALAXY CANDIDATES WITH FERMI-LAT DATA , 2015, 1503.02632.

[60]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[61]  B. E. Patchett,et al.  Metal Abundances in Nearby Stars and the Chemical History of the Solar Neighbourhood , 1975 .

[62]  Masami Ouchi,et al.  MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION , 2015, 1503.07481.

[63]  A. Kravtsov THE SIZE–VIRIAL RADIUS RELATION OF GALAXIES , 2012, 1212.2980.

[64]  R. Klessen,et al.  The first galaxies: signatures of the initial starburst , 2009, 0902.3263.

[65]  D. Nagai,et al.  THE PHYSICAL NATURE OF THE COSMIC ACCRETION OF BARYONS AND DARK MATTER INTO HALOS AND THEIR GALAXIES , 2014, 1412.0662.

[66]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[67]  L. Mayer,et al.  TIDAL STIRRING OF DISKY DWARFS WITH SHALLOW DARK MATTER DENSITY PROFILES: ENHANCED TRANSFORMATION INTO DWARF SPHEROIDALS , 2013, 1302.0008.

[68]  J. Read,et al.  Unveiling the corona of the Milky Way via ram-pressure stripping of dwarf satellites , 2013, 1305.4176.

[69]  M. Wilkinson,et al.  Dark matter in disc galaxies – II. Density profiles as constraints on feedback scenarios , 2014, 1404.7382.

[70]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[71]  G. Efstathiou Suppressing the formation of dwarf galaxies via photoionization , 1992 .

[72]  Victor P. Debattista,et al.  Thin, thick and dark discs in ΛCDM , 2008, 0803.2714.

[73]  J. Read,et al.  Growing galaxies via superbubble-driven accretion flows , 2014, 1410.3827.

[74]  Mark I. Wilkinson,et al.  A Dynamical Fossil in the Ursa Minor Dwarf Spheroidal Galaxy , 2003, astro-ph/0304093.

[75]  A. Dekel,et al.  A Universal Angular Momentum Profile for Galactic Halos , 2000, astro-ph/0011001.

[76]  M. Boylan-Kolchin,et al.  Too big to fail? The puzzling darkness of massive Milky Way subhaloes , 2011, 1103.0007.

[77]  J. Shull,et al.  The Fate of the First Galaxies. III. Properties of Primordial Dwarf Galaxies and Their Impact on the Intergalactic Medium , 2008, 0802.2715.

[78]  J. Wadsley,et al.  THE ENERGETICS OF CUSP DESTRUCTION , 2015, 1505.00825.

[79]  P. Madau,et al.  DARK MATTER HEATING AND EARLY CORE FORMATION IN DWARF GALAXIES , 2014, 1405.2577.

[80]  D. Spergel,et al.  How Lumpy Is the Milky Way’s Dark Matter Halo? , 2001, astro-ph/0111196.

[82]  Shea Garrison-Kimmel,et al.  Can feedback solve the too-big-to-fail problem? , 2013, 1301.3137.

[83]  Ben Moore,et al.  Concentration, spin and shape of dark matter haloes: Scatter and the dependence on mass and environment , 2007 .

[84]  M. Irwin,et al.  THE RESOLVED STRUCTURE AND DYNAMICS OF AN ISOLATED DWARF GALAXY: A VLT AND KECK SPECTROSCOPIC SURVEY OF WLM , 2012, 1202.4474.

[85]  C. Brook,et al.  NIHAO – IV: core creation and destruction in dark matter density profiles across cosmic time , 2015, 1507.03590.

[86]  G. Stinson,et al.  The Origin and Evolution of the Mass-Metallicity Relationship for Galaxies: Results from Cosmological N-Body Simulations , 2006, astro-ph/0609620.

[87]  Benjamin D. Johnson,et al.  MODELING THE EFFECTS OF STAR FORMATION HISTORIES ON Hα AND ULTRAVIOLET FLUXES IN NEARBY DWARF GALAXIES , 2011, 1109.2905.

[88]  M. Lombardi,et al.  ON THE STAR FORMATION RATES IN MOLECULAR CLOUDS , 2010, 1009.2985.

[89]  E. Quataert,et al.  Supernova feedback in an inhomogeneous interstellar medium , 2014, 1409.4425.

[90]  N. T. Thao,et al.  A SEARCH FOR POINT SOURCES OF EeV NEUTRONS , 2012 .

[91]  M. Viel,et al.  On the formation of dwarf galaxies and stellar haloes , 2006, astro-ph/0606391.

[92]  Cambridge,et al.  The Local Group dwarf Leo T: H i on the brink of star formation , 2007, 0711.2979.

[93]  L. Hebb,et al.  Discovery of an Unusual Dwarf Galaxy in the Outskirts of the Milky Way , 2007, astro-ph/0701154.

[94]  C. Frenk,et al.  The cores of dwarf galaxy haloes , 1996, astro-ph/9610187.

[95]  A. Kravtsov,et al.  ON THE INTERPLAY BETWEEN STAR FORMATION AND FEEDBACK IN GALAXY FORMATION SIMULATIONS , 2014, 1404.2613.

[96]  O. University,et al.  Early flattening of dark matter cusps in dwarf spheroidal galaxies , 2014, 1410.6169.

[97]  Cold dark matter heats up , 2014, Nature.

[98]  J. Read,et al.  Dark matter annihilation and decay in dwarf spheroidal galaxies: the classical and ultrafaint dSphs , 2015, 1504.02048.

[99]  J. Stadel,et al.  Discreteness Effects in ΛCDM Simulations: A Wavelet-Statistical View , 2008, 0804.0294.

[100]  A. McConnachie,et al.  DELAYED STAR FORMATION IN ISOLATED DWARF GALAXIES: HUBBLE SPACE TELESCOPE STAR FORMATION HISTORY OF THE AQUARIUS DWARF IRREGULAR , 2014, 1409.1630.

[101]  A. Schruba,et al.  OUTSIDE–IN SHRINKING OF THE STAR-FORMING DISK OF DWARF IRREGULAR GALAXIES , 2011, 1111.3363.

[102]  R. Klessen,et al.  Modelling the supernova-driven ISM in different environments , 2014, 1411.0009.

[103]  M. Kaplinghat,et al.  Sterile neutrino dark matter bounds from galaxies of the Local Group , 2013, 1311.0282.

[104]  Matching the dark matter profiles of dSph galaxies with those of simulated satellites: a two parameter comparison , 2015, 1507.03995.

[105]  N. Wyn Evans,et al.  The importance of tides for the Local Group dwarf spheroidals , 2006 .

[106]  A. Kravtsov,et al.  TOWARD A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS , 2012, 1210.4957.

[107]  H. Lux,et al.  Determining orbits for the Milky Way's dwarfs , 2009, 1001.1731.

[108]  B. Moore Evidence against dissipation-less dark matter from observations of galaxy haloes , 1994, Nature.

[109]  C. Brook,et al.  THE STELLAR-TO-HALO MASS RELATION FOR LOCAL GROUP GALAXIES , 2013, 1311.5492.

[110]  J. Bland-Hawthorn,et al.  Pregalactic metal enrichment: The chemical signatures of the first stars , 2011, 1101.4024.

[111]  J. Holtzman,et al.  THE STAR FORMATION HISTORY OF LEO T FROM HUBBLE SPACE TELESCOPE IMAGING , 2012, 1201.4859.

[112]  Joachim Stadel,et al.  Quantifying the heart of darkness with GHALO – a multibillion particle simulation of a galactic halo , 2008, 0808.2981.

[113]  A. Bolatto,et al.  The rarity of dust in metal-poor galaxies , 2013, Nature.

[114]  Dynamical friction in constant density cores: a failure of the Chandrasekhar formula , 2006, astro-ph/0606636.

[115]  Sergey E. Koposov,et al.  THE COUPLING BETWEEN THE CORE/CUSP AND MISSING SATELLITE PROBLEMS , 2012, 1207.2772.

[116]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[117]  T. Abel,et al.  Resolving the Formation of Protogalaxies. I. Virialization , 2007, 0804.4156.

[118]  V. Avila-Reese,et al.  THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES , 2015, 1512.03538.

[119]  P. Hopkins,et al.  BREATHING FIRE: HOW STELLAR FEEDBACK DRIVES RADIAL MIGRATION, RAPID SIZE FLUCTUATIONS, AND POPULATION GRADIENTS IN LOW-MASS GALAXIES , 2015, 1512.01235.

[120]  R. Teyssier,et al.  Cusp-core transformations in dwarf galaxies: observational predictions , 2012, 1206.4895.

[121]  D. Garnett The Luminosity-Metallicity Relation, Effective Yields, and Metal Loss in Spiral and Irregular Galaxies , 2002, astro-ph/0209012.

[122]  D. Bacon,et al.  Measuring dark matter substructure with galaxy–galaxy flexion statistics , 2009, 0909.5133.

[123]  J. Peñarrubia,et al.  Under the sword of Damocles: plausible regeneration of dark matter cusps at the smallest galactic scales , 2014, 1409.3848.

[124]  J. Read,et al.  A low pre-infall mass for the Carina dwarf galaxy from disequilibrium modelling , 2015, Nature Communications.

[125]  D. Hooper,et al.  A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM , 2012, 1209.5394.

[126]  G. Bryan,et al.  KINETIC ENERGY FROM SUPERNOVA FEEDBACK IN HIGH-RESOLUTION GALAXY SIMULATIONS , 2014, 1410.3822.

[127]  B. Madore,et al.  THE STAR FORMATION LAW IN NEARBY GALAXIES ON SUB-KPC SCALES , 2008, 0810.2541.

[128]  Astronomy,et al.  Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure , 2012, 1208.3025.

[129]  Cambridge,et al.  A QUANTITATIVE EXPLANATION OF THE OBSERVED POPULATION OF MILKY WAY SATELLITE GALAXIES , 2009, 0901.2116.

[130]  Joachim Stadel,et al.  Does the Fornax dwarf spheroidal have a central cusp or core , 2006 .

[131]  S. D. Rijcke,et al.  HOW THE FIRST STARS SHAPED THE FAINTEST GAS-DOMINATED DWARF GALAXIES , 2015, Proceedings of the International Astronomical Union.

[132]  R. K. D. Naray,et al.  Recovering cores and cusps in dark matter haloes using mock velocity field observations , 2010, 1012.3471.

[133]  E. Grebel,et al.  A NEW LOW MASS FOR THE HERCULES dSph: THE END OF A COMMON MASS SCALE FOR THE DWARFS? , 2009, 0910.1348.

[134]  D. Malyshev,et al.  Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies , 2014, 1408.3531.

[135]  Cooling flows within galactic haloes: the kinematics and properties of infalling multiphase gas , 2005, astro-ph/0507296.

[136]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[137]  Pavel Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[138]  M. Irwin,et al.  THE MASSES OF LOCAL GROUP DWARF SPHEROIDAL GALAXIES: THE DEATH OF THE UNIVERSAL MASS PROFILE , 2013, 1309.3053.

[139]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[140]  Fabio Governato,et al.  THE CENTRAL SLOPE OF DARK MATTER CORES IN DWARF GALAXIES: SIMULATIONS VERSUS THINGS , 2010, 1011.2777.

[141]  A. Begum,et al.  Kinematics of the faintest gas-rich galaxy in the Local Group: DDO210 , 2003, astro-ph/0310138.

[142]  L. Mayer,et al.  Can we measure the slopes of density profiles in dwarf spheroidal galaxies , 2012, 1212.3438.

[143]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[144]  S. Vercellone,et al.  Multiple flaring activity in the supergiant fast X‐ray transient IGR J08408−4503 observed with Swift , 2008, 0810.1180.

[145]  M. Krumholz,et al.  Slow Star Formation in Dense Gas: Evidence and Implications , 2006, astro-ph/0606277.

[146]  Oliver D. Elbert,et al.  Core formation in dwarf haloes with self-interacting dark matter: no fine-tuning necessary , 2014, 1412.1477.

[147]  M. Steinmetz,et al.  Energy Input and Mass Redistribution by Supernovae in the Interstellar Medium , 1997, astro-ph/9706175.

[148]  Nickolay Y. Gnedin,et al.  MODELING MOLECULAR HYDROGEN AND STAR FORMATION IN COSMOLOGICAL SIMULATIONS , 2008, 0810.4148.

[149]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[150]  G. Gilmore,et al.  Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles , 2004, astro-ph/0409565.

[151]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[152]  Sergey E. Koposov,et al.  Indication of Gamma-Ray Emission from the Newly Discovered Dwarf Galaxy Reticulum II. , 2015, Physical review letters.

[153]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[154]  J. Wadsley,et al.  Stellar Feedback in Dwarf Galaxy Formation , 2007, Science.

[155]  OBSERVATIONAL AND THEORETICAL CONSTRAINTS ON SINGULAR DARK MATTER HALOS , 1994, astro-ph/9402004.

[156]  Isaac Shlosman,et al.  Dark Halos: The Flattening of the Density Cusp by Dynamical Friction , 2001, astro-ph/0103386.

[157]  Cambridge,et al.  How supernova feedback turns dark matter cusps into cores , 2011, 1106.0499.

[158]  M. Norman,et al.  THE BIRTH OF A GALAXY: PRIMORDIAL METAL ENRICHMENT AND STELLAR POPULATIONS , 2010, 1011.2632.

[159]  R. Teyssier,et al.  Milking the spherical cow – on aspherical dynamics in spherical coordinates , 2015, 1502.07356.

[160]  Judith G. Cohen,et al.  THE UNIVERSAL STELLAR MASS–STELLAR METALLICITY RELATION FOR DWARF GALAXIES , 2013, 1310.0814.

[161]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[162]  P. Hopkins,et al.  Self-regulated star formation in galaxies via momentum input from massive stars , 2011, 1101.4940.

[163]  P. Hopkins,et al.  Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies , 2015, 1502.02036.

[164]  C. Brook,et al.  A mass-dependent density profile for dark matter haloes including the influence of galaxy formation , 2014, 1404.5959.

[165]  M. Edmunds General constraints on the effect of gas flows in the chemical evolution of galaxies , 1990 .

[166]  W. Dehnen,et al.  Weakening dark matter cusps by clumpy baryonic infall , 2011, 1105.4050.

[167]  George Lake,et al.  Detectability of γ-rays from clumps of dark matter , 1990, Nature.

[168]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[169]  E. Bertschinger,et al.  Dynamics of radiative supernova remnants , 1988 .

[170]  Mario Mateo,et al.  A Universal Mass Profile for Dwarf Spheroidal Galaxies , 2009 .

[171]  A. McConnachie,et al.  The impact of dark matter cusps and cores on the satellite galaxy population around spiral galaxies , 2010, 1002.3376.

[172]  SCALING RELATIONS OF DWARF GALAXIES WITHOUT SUPERNOVA-DRIVEN WINDS , 2006, astro-ph/0609763.

[173]  A. Klypin,et al.  Low-mass galaxy assembly in simulations: regulation of early star formation by radiation from massive stars , 2013, 1311.2910.

[174]  M. Wilkinson,et al.  Dark matter in disc galaxies - I. A Markov Chain Monte Carlo method and application to DDO 154 , 2013, 1304.1699.

[175]  C. Frenk,et al.  The phase space density of fermionic dark matter haloes , 2012, 1209.5563.

[176]  A. Pontzen,et al.  pynbody: N-Body/SPH analysis for python , 2013 .

[177]  B. Willman,et al.  Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows , 2009, Nature.

[178]  E. Ostriker,et al.  MOMENTUM INJECTION BY SUPERNOVAE IN THE INTERSTELLAR MEDIUM , 2014, 1410.1537.

[179]  Vanessa Hill,et al.  The Kinematic Status and Mass Content of the Sculptor Dwarf Spheroidal Galaxy , 2008, 0802.4220.