A Motion-Planning Algorithm for the Rolling-Body Problem

In this paper, we consider the control system defined by the rolling of a strictly convex surface S of IR3 on a plane without slipping or spinning. The purpose of this paper is to present the numerical implementation of a constructive planning algorithm for Σ, which is based on a continuation method. The performances of that algorithm, both in robustness and convergence speed, are illustrated through several examples.

[1]  H. Sussmann,et al.  A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[2]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[3]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[4]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[5]  I. Holopainen Riemannian Geometry , 1927, Nature.

[6]  Y. Chitour A continuation method for motion-planning problems , 2006 .

[7]  Jian S. Dai,et al.  A Darboux-Frame-Based Formulation of Spin-Rolling Motion of Rigid Objects With Point Contact , 2010, IEEE Transactions on Robotics.

[8]  Yacine Chitour Path planning on compact Lie groups using a homotopy method , 2002, Syst. Control. Lett..

[9]  Antonio Bicchi,et al.  Dexterous Grippers: Putting Nonholonomy to Work for Fine Manipulation , 2002, Int. J. Robotics Res..

[10]  Antonio Bicchi,et al.  Rolling bodies with regular surface: controllability theory and applications , 2000, IEEE Trans. Autom. Control..

[11]  T. Ważewski,et al.  Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .

[12]  David J. Montana,et al.  The Kinematics of Contact and Grasp , 1988, Int. J. Robotics Res..

[13]  Leopold Alexander Pars,et al.  A Treatise on Analytical Dynamics , 1981 .

[14]  H. Sussmann New Differential Geometric Methods in Nonholonomic Path Finding , 1992 .

[15]  Krzysztof Tchoń,et al.  Singularity Robust Jacobian Inverse Kinematics for Mobile Manipulators , 2008 .

[16]  Zexiang Li,et al.  Motion of two rigid bodies with rolling constraint , 1990, IEEE Trans. Robotics Autom..

[17]  A. Chelouah,et al.  On the motion planning of rolling surfaces , 2003 .

[18]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[19]  Krzysztof Tchoń,et al.  Endogenous configuration space approach to mobile manipulators: A derivation and performance assessment of Jacobian inverse kinematics algorithms , 2003 .

[20]  Héctor J. Sussmann,et al.  Line-Integral Estimates and Motion Planning Using the Continuation Method , 1998 .

[21]  John T. Wen,et al.  A path space approach to nonholonomic motion planning in the presence of obstacles , 1997, IEEE Trans. Robotics Autom..