Block size, parallelism and predictive performance: finding the sweet spot in distributed learning

[1]  W. Wang,et al.  Cloud-based storage and computing for remote sensing big data: a technical review , 2022, Int. J. Digit. Earth.

[2]  Aytuğ Onan Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification , 2022, J. King Saud Univ. Comput. Inf. Sci..

[3]  Davide Carneiro,et al.  Using meta‐learning to predict performance metrics in machine learning problems , 2021, Expert Syst. J. Knowl. Eng..

[4]  Davide Carneiro,et al.  A predictive and user-centric approach to Machine Learning in data streaming scenarios , 2021, Neurocomputing.

[5]  Plamen P. Angelov,et al.  Explainable artificial intelligence: an analytical review , 2021, WIREs Data Mining Knowl. Discov..

[6]  Ji Liu,et al.  From distributed machine learning to federated learning: a survey , 2021, Knowledge and Information Systems.

[7]  Francisco Herrera,et al.  A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities , 2020, Inf. Fusion.

[8]  Smitha Rajagopal,et al.  A Stacking Ensemble for Network Intrusion Detection Using Heterogeneous Datasets , 2020, Secur. Commun. Networks.

[9]  Tim Verbelen,et al.  A Survey on Distributed Machine Learning , 2019, ACM Comput. Surv..

[10]  João Gama,et al.  Machine learning for streaming data: state of the art, challenges, and opportunities , 2019, SKDD.

[11]  Zhiwen Yu,et al.  A survey on ensemble learning , 2019, Frontiers of Computer Science.

[12]  Alexei Botchkarev,et al.  Performance Metrics (Error Measures) in Machine Learning Regression, Forecasting and Prognostics: Properties and Typology , 2018, Interdisciplinary Journal of Information, Knowledge, and Management.

[13]  Aytug Onan,et al.  An ensemble scheme based on language function analysis and feature engineering for text genre classification , 2018, J. Inf. Sci..

[14]  Evaggelia Pitoura,et al.  Diversity in Big Data: A Review , 2017, Big Data.

[15]  Athanasios V. Vasilakos,et al.  Machine learning on big data: Opportunities and challenges , 2017, Neurocomputing.

[16]  Aytug Onan,et al.  Ensemble of keyword extraction methods and classifiers in text classification , 2016, Expert Syst. Appl..

[17]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[18]  Robert E. Tillman,et al.  Structure learning with independent non-identically distributed data , 2009, ICML '09.

[19]  Zhi-Hua Zhou,et al.  Machine Learning , 2021 .