Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change.

We present a method for reducing intensity fluctuations that typically occur when a spatial light modulator is updated between consecutive computer generated holograms. The method is applicable to most iterative hologram generating algorithms and minimizes the average phase difference between consecutive holograms. Applications with high stability requirements, such as optical force measurement with holographic optical tweezers, should benefit from this improvement.

[1]  Daniel Agren,et al.  Retrocommunication utilizing electroabsorption modulators and nonmechanical beam steering , 2005 .

[2]  Nancy R Forde,et al.  Calibration of dynamic holographic optical tweezers for force measurements on biomaterials. , 2008, Optics express.

[3]  S Bernet,et al.  Wavefront correction of spatial light modulators using an optical vortex image. , 2007, Optics express.

[4]  Benjamin P. B. Downing,et al.  Stretching single DNA molecules to demonstrate high‐force capabilities of holographic optical tweezers , 2010, Journal of biophotonics.

[5]  Michael W. Farn New iterative algorithm for the design of phase-only gratings , 1991, Optics & Photonics.

[6]  Hans J. Tiziani,et al.  Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays , 1997 .

[7]  M J Padgett,et al.  The effect of external forces on discrete motion within holographic optical tweezers. , 2007, Optics express.

[8]  Anna Linnenberger,et al.  Increasing Trap Stiffness with Position Clamping in Holographic Optical Tweezers , 2022 .

[9]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[10]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[11]  Brian Robertson,et al.  Adaptive beam steering implemented in a ferroelectric liquid-crystal spatial-light-modulator free-space, fiber-optic switch. , 2002, Applied optics.

[12]  H. Tiziani,et al.  Multi-functional optical tweezers using computer-generated holograms , 2000 .

[13]  Joachim P Spatz,et al.  Symmetry dependence of holograms for optical trapping. , 2005, Optics letters.

[14]  O. Bryngdahl,et al.  Iterative Fourier-transform algorithm applied to computer holography , 1988 .

[15]  D. Grier A revolution in optical manipulation , 2003, Nature.

[16]  E Marom,et al.  Dynamic optical interconnections. , 1987, Optics letters.

[17]  Steve Serati,et al.  Improving spatial light modulator performance through phase compensation , 2004, SPIE Optics + Photonics.

[18]  M. S. Millán,et al.  Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays. , 2007, Applied optics.

[19]  Giancarlo Ruocco,et al.  Computer generation of optimal holograms for optical trap arrays. , 2007, Optics express.

[20]  Jörgen Bengtsson,et al.  Diffraction-based determination of the phase modulation for general spatial light modulators. , 2006, Applied optics.

[21]  H J Tiziani,et al.  Optical particle trapping with computer-generated holograms written on a liquid-crystal display. , 1999, Optics letters.

[22]  Mattias Goksör,et al.  Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm. , 2009, Optics express.

[23]  Lars Sjöqvist,et al.  Fringing fields in a liquid crystal spatial light modulator for beam steering , 2004 .

[24]  Eric R Dufresne,et al.  Multiplexed force measurements on live cells with holographic optical tweezers. , 2009, Optics express.

[25]  R. Cohn,et al.  Phase calibration of spatially nonuniform spatial light modulators. , 2004, Applied optics.

[26]  G. Spalding,et al.  Computer-generated holographic optical tweezer arrays , 2000, cond-mat/0008414.

[27]  Wolfgang Osten,et al.  Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers. , 2006, Applied optics.