The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis Interdependence of the steps

Abstract The quantum-mechanical computations of Nimlos et al. [M.R. Nimlos, S.J. Blanksby, G.B. Ellison, R.J. Evans, J. Anal. Appl. Pyrol. 66 (2003) 3–27] predict that peak temperatures of dehydration of non-protonated forms of alcohols at the heating rate of about 0.033 K/s (2 °C/min) exceed 600 °C. Peak temperatures for completely protonated alcohols lie at about 100 °C, while the experimental peak temperature of cellulose dehydration is equal approximately to 300 °C. The latter value is very close to the peak of the rate of overall mass loss, ≈300 °C. Hence, one may conclude that the dehydration is a fast secondary reaction with respect to cellulose depolymerization. Neither considerable dehydration nor other reactions of the β-elimination seems to occur inside the solid matrix of polymer cellulose. The elimination needs an acid catalyst for protonation of oxygen at the α-position. But this catalyst is absent in the matrix. High-boiling liquid tar arising as a result of transglycosylation launches the ionic mechanisms, filling up the cavities in cellulose and playing the role of an electrolyte. Volatile acids dissolved in the tar are the strong catalysts accelerating various heterolytic (ionic) reactions, including depolymerization by the acid-catalyzed β-elimination. A two-level kinetic model summarizes such conclusions. The transglycosylation leads to the appearance of non-reducing ends. In the regime of their fast destruction and a quasi-stationary removal of the corresponding volatile acids from the pyrolysis zone the apparent activation energy of the formation of light gases, E gas , is the sum of activation energy of transglycosylation, E tar , and the true activation energy of the β-elimination, E β , namely: E gas  =  E tar  +  E β . One can evaluate E β  =  E gas  −  E tar  ≈ 50–60 kJ/mol.

[1]  The Cyclone: A Multifunctional Reactor for the Fast Pyrolysis of Biomass , 2000 .

[2]  M. Antal,et al.  The Art, Science, and Technology of Charcoal Production† , 2003 .

[3]  Serge Bourbigot,et al.  Modulated thermogravimetry in analysis of decomposition kinetics , 2005 .

[4]  E. S. Amis,et al.  Solvent effects on chemical phenomena , 1973 .

[5]  Gert B. Eijkel,et al.  Evidence for oligomers in pyrolysates of microcrystalline cellulose , 1989 .

[6]  S. Bourbigot,et al.  Kinetic analysis of the thermal decomposition of cellulose: The change of the rate limitation , 2007 .

[7]  M. Antal,et al.  Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulose pyrolysis , 1983 .

[8]  Michael Jerry Antal,et al.  Kinetic modeling of biomass pyrolysis , 1997 .

[9]  Gert B. Eijkel,et al.  Linking of pyrolysis-chemical ionisation mass spectrometric and monomer compositional data of 0-(2-hydroxyethyl) celluloses by canonical correlation analysis , 1995 .

[10]  Olivier Boutin,et al.  Flash pyrolysis of cellulose pellets submitted to a concentrated radiation: experiments and modelling , 2002 .

[11]  L. Kam,et al.  Study of the sequential conversion of citric to itaconic to methacrylic acid in near-critical and supercritical water , 1994 .

[12]  S. Saka,et al.  Thermochemical Conversion of Cellulose in Polar Solvent (Sulfolane) into Levoglucosan and Other Low Molecular-Weight Substances , 2003 .

[13]  W. Tsang Thermal stability of alcohols , 1976 .

[14]  Dae-Young Kim,et al.  Rapid-cooling, continuous-feed pyrolyzer for biomass processing: Preparation of levoglucosan from cellulose and starch , 2007 .

[15]  K. H. Shafer,et al.  Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis , 2001 .

[16]  J. Boon,et al.  Characterisation of oligomers and sugar ring-cleavage products in the pyrolysate of cellulose , 1991 .

[17]  Piotr Majerski,et al.  Flash pyrolysis of cellulose for production of anhydro-oligomers , 2000 .

[18]  M. Antal,et al.  Influence of pressure on the acid-catalyzed rate constant for 1-propanol dehydration in supercritical water , 1990 .

[19]  Eric M. Suuberg,et al.  Thermal Effects in Cellulose Pyrolysis: Relationship to Char Formation Processes , 1996 .

[20]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[21]  Roger M. Rowell,et al.  Handbook of wood chemistry and wood composites. , 2005 .

[22]  J. Lédé,et al.  Radiant flash pyrolysis of cellulose pellets: products and mechanisms involved in transient and steady state conditions , 2002 .

[23]  F. Shafizadeh,et al.  The chemistry of pyrolysis and combustion , 1984 .

[24]  Michael Jerry Antal,et al.  Thermal Lag, Fusion, and the Compensation Effect during Biomass Pyrolysis† , 1996 .

[25]  Eric M. Suuberg,et al.  Vapor Pressures and Enthalpies of Sublimation of d-Glucose, d-Xylose, Cellobiose, and Levoglucosan , 1999 .

[26]  Stefan Czernik,et al.  Pretreatment of wood and cellulose for production of sugars by fast pyrolysis , 1989 .

[27]  Eric M. Suuberg,et al.  Cellulose Thermal Decomposition Kinetics: Global Mass Loss Kinetics , 1995 .

[28]  R. Gross,et al.  Chemicals from Biomass , 2007, Science.

[29]  G. N. Richards,et al.  Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose an sucrose. , 1990, Carbohydrate research.

[30]  Serge Bourbigot,et al.  Model-free method for evaluation of activation energies in modulated thermogravimetry and analysis of cellulose decomposition , 2006 .

[31]  中西 香爾,et al.  Comprehensive natural products chemistry , 1999 .

[32]  Takashi Kashiwagi,et al.  Global kinetic constants for thermal oxidative degradation of a cellulosic paper , 1992 .

[33]  M. Antal,et al.  Is the Broido-Shafizadeh model for cellulose pyrolysis true? , 1994 .

[34]  M. Antal,et al.  Mechanism and kinetics of the acid-catalyzed formation of ethene and diethyl ether from ethanol in supercritical water , 1991 .

[35]  F. Shafizadeh Thermal behavior of carbohydrates , 2007 .

[36]  M. Antal,et al.  Formation of charcoal from biomass in a sealed reactor , 1992 .

[37]  E. Kaisersberger,et al.  Model-free analysis of thermoanalytical data-advantages and limitations , 2002 .

[38]  Michael Jerry Antal,et al.  Mechanism of formation of 2-furaldehyde from d-xylose , 1991 .

[39]  M. Keil,et al.  Gas Phase Thermal Decomposition of tert-Butyl Alcohol , 1974 .

[40]  Anthony V. Bridgwater,et al.  Principles and practice of biomass fast pyrolysis processes for liquids , 1999 .

[41]  R. Evans,et al.  Enhancement of 1,2-dehydration of alcohols by alkali cations and protons : a model for dehydration of carbohydrates , 2003 .

[42]  John Brindley,et al.  The role of char-forming processes in the thermal decomposition of cellulose , 1999 .

[43]  Kunio Arai,et al.  Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water , 2000 .

[44]  Michael Jerry Antal,et al.  Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water , 1992 .

[45]  M. Antal,et al.  Cellulose Pyrolysis Kinetics: The Current State of Knowledge , 1995 .

[46]  Fred Shafizadeh,et al.  Production of levoglucosan and glucose from pyrolysis of cellulosic materials , 1979 .

[47]  H. Kooi,et al.  Application of the SAFT equation of state to biomass fast pyrolysis liquid , 2005 .

[48]  Michael Jerry Antal,et al.  Kinetics of the thermal decomposition of cellulose in sealed vessels at elevated pressures. Effects of the presence of water on the reaction mechanism , 1993 .

[49]  Giovanni Camino,et al.  Overview of water evolution during the thermal degradation of cellulose , 2001 .

[50]  J. I. Seeman,et al.  A model that distinguishes the pyrolysis of d-glucose, d-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation , 2003 .

[51]  M. Antal,et al.  Numerical studies of the flash pyrolysis of cellulose , 1985 .

[52]  B. M. Kabyemela,et al.  Mechanism and Kinetics of Cellobiose Decomposition in Sub- and Supercritical Water , 1998 .

[53]  Anthony V. Bridgwater,et al.  Fast pyrolysis of biomass : a handbook , 1999 .

[54]  R. Overend,et al.  Influence of acid pretreatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose , 1993 .

[55]  D. A. Tillman,et al.  Thermal Uses and Properties of Carbohydrates and Lignins , 1976 .

[56]  Fred Shafizadeh,et al.  Introduction to pyrolysis of biomass , 1982 .

[57]  Phillip E. Savage,et al.  Organic Chemical Reactions in Supercritical Water. , 1999, Chemical reviews.

[58]  S. Saka,et al.  Heterogeneity in cellulose pyrolysis indicated from the pyrolysis in sulfolane , 2006 .

[59]  Serge Bourbigot,et al.  Kinetic analysis of the thermal decomposition of cellulose: The main step of mass loss , 2007 .

[60]  K. Cen,et al.  Mechanism Study of Cellulose Rapid Pyrolysis , 2004 .

[61]  F. Shafizadeh,et al.  Thermal degradation of 1,6-anhydro-.beta.-D-glucopyranose , 1972 .

[62]  Paul Langan,et al.  Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. , 2002, Journal of the American Chemical Society.

[63]  Thomas A. Milne,et al.  Molecular characterization of the pyrolysis of biomass , 1987 .

[64]  J. Boon,et al.  High-performance liquid chromatography/chemical ionization mass spectrometric analysis of pyrolysates of amylose and cellulose , 1990 .

[65]  Olivier Boutin,et al.  Radiant flash pyrolysis of cellulose—Evidence for the formation of short life time intermediate liquid species , 1998 .

[66]  L. K. Mudge,et al.  Fundamentals of thermochemical biomass conversion , 1985 .

[67]  K. H. Shafer,et al.  Gas evolution and the mechanism of cellulose pyrolysis , 2001 .

[68]  M. Antal,et al.  Mechanism and temperature-dependent kinetics of the dehydration of tert-butyl alcohol in hot compressed liquid water , 1997 .

[69]  Michael Jerry Antal,et al.  Formation of acrylic acid from lactic acid in supercritical water , 1989 .

[70]  Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments , 2002, physics/0207101.

[71]  G. N. Richards,et al.  Pyrolysis of some 13C-labeled glucans: a mechanistic study , 1993 .

[72]  M. Antal,et al.  Mechanism and Kinetics of the Acid-Catalyzed Dehydration of 1- and 2-Propanol in Hot Compressed Liquid Water , 1998 .

[73]  J. Kennedy,et al.  Cellulose and wood: Chemistry and technology , 1991 .

[74]  Donald S. Scott,et al.  On the mechanism of the rapid pyrolysis of cellulose , 1986 .

[75]  H. Chum,et al.  Mass spectrometric studies of the thermal decomposition of carbohydrates using 13C-labeled cellulose and glucose. , 1996, Carbohydrate research.

[76]  K. H. Shafer,et al.  Cellulose pyrolysis: the kinetics of hydroxyacetaldehyde evolution , 2001 .

[77]  D. Radlein,et al.  On the presence of anhydro-oligosaccharides in the sirups from the fast pyrolysis of cellulose , 1987 .

[78]  A. Burnham,et al.  Assessment of various kinetic models for the pyrolysis of a microgranular cellulose , 2004 .

[79]  M. Antal,et al.  Cellulose Pyrolysis Kinetics: Revisited , 1998 .

[80]  Fred Shafizadeh,et al.  A kinetic model for pyrolysis of cellulose. , 1979 .

[81]  L. Hammett,et al.  Physical organic chemistry : reaction rates, equilibria, and mechanisms , 1940 .

[82]  Fred Shafizadeh,et al.  Thermal degradation of cellulose in air and nitrogen at low temperatures , 1979 .

[83]  M. Burghammer,et al.  In situ X-ray diffraction investigation of thermal decomposition of wood cellulose , 2007 .