Echelle Spectroscopy of a Gamma-Ray Burst Afterglow at z = 3.969: A New Probe of the Interstellar and Intergalactic Media in the Young Universe

We present an echelle spectrum of the Swift GRB 050730, obtained 4 hr after the burst using the MIKE spectrograph on the Magellan Clay telescope when the afterglow was at R = 17.7. The spectrum reveals a forest of absorption features superposed on a simple power-law shaped continuum, best described as fν(λ) ∝ λα with α = 1.88 ± 0.01 over λ = 7000-9000 Å. We identify the gamma-ray burst (GRB) host at zGRB = 3.96855 based on the hydrogen Lyman absorption series, narrow absorption lines due to heavy ions such as O I, C II, Si II, S II, Ni II, Fe II, C IV, Si IV, and N V, and fine-structure transitions such as O I*, O I**, Si II*, C II*, and Fe II*. Together these transitions allow us to study the properties of the interstellar medium (ISM) in the GRB host. The principal results are as follows. (1) We estimate a neutral hydrogen column density of log N(H ) = 22.15 ± 0.05 in the host. (2) The associated metal lines exhibit multiple components over a velocity range of ~80 km s-1, with >90% of the neutral gas confined in 20 km s-1. (3) Comparisons between different ionic transitions show that the host has little or no dust depletion and has 1/100 solar metallicity. (4) The absorbing gas has much higher density than that of intervening damped Lyα absorption (DLA) systems. In addition, we report the identification of an intervening DLA system at zDLA = 3.56439 with log N(H ) = 20.3 ± 0.1 and <5% solar metallicity, a Lyman limit system at zLLS = 3.02209 with log N(H ) = 19.9 ± 0.1, a strong Mg II absorber at z = 2.25313, and a pair of Mg II absorbers at z = 1.7731, 57 km s-1 apart. We demonstrate that rapid echelle spectroscopy of GRB afterglows helps to reveal a wealth of information in the ISM and the intergalactic medium along the sight line, which, when followed up with late-time deep imaging, will allow us to uncover a sample of distant galaxies with known ISM properties to constrain galaxy formation models.

[1]  E. Verner,et al.  The Absorption Spectrum of High-Density Stellar Ejecta in the Line of Sight to η Carinae , 2004, astro-ph/0411147.

[2]  S. Covino,et al.  A Flash in the Dark: UVES Very Large Telescope High-Resolution Spectroscopy of Gamma-Ray Burst Afterglows , 2004, astro-ph/0409717.

[3]  J. P. U. Fynbo,et al.  The line-of-sight towards GRB 030429 at z =2.66: Probing the matter at stellar, galactic and intergalactic scales , 2004, astro-ph/0407439.

[4]  Kevin C. Hurley,et al.  The Host Galaxy of GRB 031203: Implications of Its Low Metallicity, Low Redshift, and Starburst Nature , 2004, astro-ph/0402085.

[5]  R. Nichol,et al.  The Sloan Digital Sky Survey Quasar Catalog. II. First Data Release , 2003, astro-ph/0308443.

[6]  Hsiao-Wen Chen,et al.  The Nature of Damped Lyα Absorbing Galaxies at z ≤ 1: A Photometric Redshift Survey of Damped Lyα Absorbers , 2003, astro-ph/0308190.

[7]  J. Prochaska,et al.  The ESI/Keck II Damped Lyα Abundance Database , 2003, astro-ph/0305312.

[8]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[9]  J. Prochaska,et al.  C II* Absorption in Damped Lyα Systems. I. Star Formation Rates in a Two-Phase Medium , 2003, astro-ph/0304040.

[10]  Stephen A. Shectman,et al.  MIKE: A Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[11]  S. R. Kulkarni,et al.  Optical Spectropolarimetry of the GRB 020813 Afterglow , 2002, astro-ph/0212554.

[12]  J. Bergeron,et al.  Low-Redshift Damped Lyα Galaxies toward the Quasars B2 0827+243, PKS 0952+179, PKS 1127–145, and PKS 1629+120 , 2002, astro-ph/0211297.

[13]  S. M. Fall,et al.  Heavy-Element Abundances and Dust Depletions in the Host Galaxies of Three Gamma-Ray Bursts , 2002, astro-ph/0203154.

[14]  S. Djorgovski,et al.  Keck Spectroscopy and Hubble Space Telescope Imaging of GRB 000926: Probing a Host Galaxy at z = 2.038 , 2001, astro-ph/0110566.

[15]  J. P. U. Fynbo,et al.  Absorption systems in the spectrum of GRB 021004 , 2002, astro-ph/0210654.

[16]  U. Oklahoma,et al.  The UCSD HIRES/Keck I Damped Lyα Abundance Database. IV. Probing Galactic Enrichment Histories with Nitrogen , 2002, astro-ph/0206296.

[17]  S. Djorgovski,et al.  Detection of a Supernova Signature Associated with GRB 011121 , 2002, astro-ph/0203391.

[18]  J. Kneib,et al.  Submillimeter Galaxies , 2002, astro-ph/0202228.

[19]  M. Malkan,et al.  NICMOS Snapshot Survey of Damped Lyα Quasars , 2001, astro-ph/0112416.

[20]  D. Turnshek,et al.  Low-Redshift Damped Lyman Alpha Galaxies Towards the Quasars B 2 0827 + 243 , PKS 0952 + 179 , PKS 1127 − 145 , and PKS 1629 + 120 1 , 2002 .

[21]  A. Szalay,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. IV. Luminosity Function from the Fall Equatorial Stripe Sample , 2001 .

[22]  J. Fynbo,et al.  The afterglow of the short/intermediate-duration gamma-ray burst GRB 000301C: A jet at z = 2:04 ?;??;??? , 2000, astro-ph/0005609.

[23]  M. Steinmetz,et al.  Damped Lyα Absorber and the Faint End of the Galaxy Luminosity Function at High Redshift , 1999, astro-ph/9911447.

[24]  G. Gisler,et al.  Observation of contemporaneous optical radiation from a γ-ray burst , 1999, Nature.

[25]  R. Nichol,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.

[26]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[27]  C. Steidel,et al.  Metal Abundances at z < 1.5: Fresh Clues to the Chemical Enrichment History of Damped Lyα Systems , 1998, astro-ph/9808017.

[28]  B. Paczyński Are Gamma-Ray Bursts in Star-Forming Regions? , 1997, astro-ph/9710086.

[29]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[30]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .