KiDS+2dFLenS+GAMA: testing the cosmological model with the EG statistic

We present a new measurement of EG, which combines measurements of weak gravitational lensing, galaxy clustering, and redshift-space distortions. This statistic was proposed as a consistency test of General Relativity (GR) that is insensitive to linear, deterministic galaxy bias, and the matter clustering amplitude. We combine deep imaging data from KiDS with overlapping spectroscopy from 2dFLenS, BOSS DR12, and GAMA and find EG(z = 0.267) = 0.43 ± 0.13 (GAMA), EG(z = 0.305) = 0.27 ± 0.08 (LOWZ+2dFLOZ), and EG(z = 0.554) = 0.26 ± 0.07 (CMASS+2dFHIZ). We demonstrate that the existing tension in the value of the matter density parameter hinders the robustness of this statistic as solely a test of GR. We find that our EG measurements, as well as existing ones in the literature, favour a lower matter density cosmology than the cosmic microwave background. For a flat CDM Universe, we find m(z = 0) = 0.25 ± 0.03. With this paper, we publicly release the 2dFLenS data set at: http://2dflens.swin.edu.au.

[1]  C. Baugh,et al.  A Lightcone Catalogue from the Millennium-XXL Simulation , 2017, 1701.06581.

[2]  H. Hoekstra,et al.  Cosmological simulations for combined-probe analyses: covariance and neighbour-exclusion bias , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  S. Ho,et al.  Probing gravity with a joint analysis of galaxy and CMB lensing and SDSS spectroscopy , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  L. Amendola,et al.  Fate of Large-Scale Structure in Modified Gravity After GW170817 and GRB170817A. , 2017, Physical review letters.

[5]  M. Bilicki,et al.  Photometric redshifts for the Kilo-Degree Survey , 2017, Astronomy & Astrophysics.

[6]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[7]  R. Nichol,et al.  Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.

[8]  Karl Glazebrook,et al.  KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering , 2017, 1707.06627.

[9]  H. Hoekstra,et al.  KiDS-i-800: Comparing weak gravitational lensing measurements from same-sky surveys , 2017, 1707.04105.

[10]  Edwin Valentijn,et al.  KiDS+GAMA : cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, and angular clustering , 2017, 1706.05004.

[11]  P. Ferreira,et al.  Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A. , 2017, Physical review letters.

[12]  F. Vernizzi,et al.  Dark Energy after GW170817 and GRB170817A. , 2017, Physical review letters.

[13]  B. Jain,et al.  Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. , 2017, Physical review letters.

[14]  J. Ezquiaga,et al.  Dark Energy After GW170817: Dead Ends and the Road Ahead. , 2017, Physical review letters.

[15]  A. Hopkins,et al.  A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups , 2017, 1703.06657.

[16]  N. R. Napolitano,et al.  The third data release of the Kilo-Degree Survey and associated data products , 2017, 1703.02991.

[17]  C. Heymans,et al.  The 2-degree Field Lensing Survey: photometric redshifts from a large new training sample to r < 19.5 , 2016, 1612.00839.

[18]  Maria E. S. Pereira,et al.  Lensing is Low: Cosmology, Galaxy Formation, or New Physics? , 2016, 1611.08606.

[19]  A. Slosar,et al.  Galaxy–galaxy lensing estimators and their covariance properties , 2016, 1611.00752.

[20]  S. Ho,et al.  Testing gravity on large scales by combining weak lensing with galaxy clustering using CFHTLenS and BOSS CMASS , 2016, 1610.09410.

[21]  R. Nichol,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function , 2016, 1607.03145.

[22]  H. Hoekstra,et al.  Calibration of weak-lensing shear in the Kilo-Degree Survey , 2016, 1606.05337.

[23]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[24]  L. Lombriser,et al.  Challenges to Self-Acceleration in Modified Gravity from Gravitational Waves and Large-Scale Structure , 2016, 1602.07670.

[25]  C. Heymans,et al.  Revisiting CFHTLenS cosmic shear: Optimal E/B mode decomposition using COSEBIs and compressed COSEBIs , 2016, 1601.00115.

[26]  B. Garilli,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS). Gravity test from the combination of redshift-space distortions and galaxy-galaxy lensing at $0.5 < z < 1.2$ , 2016, 1612.05647.

[27]  D. Gerdes,et al.  Galaxy bias from galaxy-galaxy lensing in the DES science verification data , 2016, 1609.08167.

[28]  C. Heymans,et al.  The 2-degree Field Lensing Survey: design and clustering measurements , 2016, 1608.02668.

[29]  C. Heymans,et al.  RCSLenS: a new estimator for large-scale galaxy-matter correlations , 2015, 1512.03625.

[30]  A. Heavens,et al.  Parameter inference with estimated covariance matrices , 2015, 1511.05969.

[31]  Shirley Ho,et al.  Constraining gravity at the largest scales through CMB lensing and galaxy velocities , 2015, 1511.04457.

[32]  C. Heymans,et al.  RCSLenS: testing gravitational physics through the cross-correlation of weak lensing and large-scale structure , 2015, 1507.03086.

[33]  C. Heymans,et al.  Testing gravity with EG: mapping theory onto observations , 2015, 1510.04287.

[34]  L. Lombriser,et al.  Breaking a dark degeneracy with gravitational waves , 2015, 1509.08458.

[35]  Edwin Valentijn,et al.  Gravitational lensing analysis of the Kilo-Degree Survey , 2015, 1507.00738.

[36]  A. Hopkins,et al.  Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data , 2015, 1507.00735.

[37]  J. A. Vázquez-Mata,et al.  Galaxy and mass assembly (GAMA): End of survey report and data release 2 , 2015, 1506.08222.

[38]  S. Ho,et al.  Testing general relativity with growth rate measurement from Sloan Digital Sky Survey – III. Baryon Oscillations Spectroscopic Survey galaxies , 2015, 1504.02100.

[39]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[40]  D. Bacon,et al.  Model-independent constraints on dark energy and modified gravity with the SKA , 2015, 1501.03840.

[41]  P. Ferreira,et al.  Exploring degeneracies in modified gravity with weak lensing , 2015, 1501.03509.

[42]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[43]  Ludovic van Waerbeke,et al.  Simulations of weak gravitational lensing – II. Including finite support effects in cosmic shear covariance matrices , 2014, 1406.0543.

[44]  J. Brownstein,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. II. ASTROPHYSICAL AND COSMOLOGICAL CONSTRAINTS , 2014, 1407.1856.

[45]  Jean Coupon,et al.  athena: Tree code for second-order correlation functions , 2014 .

[46]  P. Ferreira,et al.  Relativistic scalar fields and the quasistatic approximation in theories of modified gravity , 2013, 1310.3266.

[47]  C. Skordis,et al.  A fast route to modified gravitational growth , 2013, 1310.1086.

[48]  Simon P. Driver,et al.  The VISTA Kilo-degree Infrared Galaxy (VIKING) Survey: Bridging the Gap between Low and High Redshift , 2013 .

[49]  J. Brinkmann,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. I. MEASUREMENTS , 2013, 1311.1480.

[50]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure , 2013, 1309.5556.

[51]  J. Rhodes,et al.  Exploiting Cross Correlations and Joint Analyses , 2013, 1309.5388.

[52]  C. Baugh,et al.  Nonlinear structure formation in the cubic Galileon gravity model , 2013, 1306.3219.

[53]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[54]  A. Silvestri,et al.  Practical approach to cosmological perturbations in modified gravity , 2013, 1302.1193.

[55]  H. Hoekstra,et al.  CFHTLenS: testing the laws of gravity with tomographic weak lensing and redshift-space distortions , 2012, 1212.3339.

[56]  H. Hoekstra,et al.  Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.

[57]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[58]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[59]  O. Lahav,et al.  On combining galaxy clustering and weak lensing to unveil galaxy biasing via the halo model , 2012, 1203.2616.

[60]  M. Kaplinghat,et al.  Dark Energy and Neutrino Masses from Future Measurements of the Expansion History and Growth of Structure , 2011, 1106.0299.

[61]  G. Bernstein,et al.  Combining weak-lensing tomography and spectroscopic redshift surveys , 2011, 1112.4478.

[62]  H. Hoekstra,et al.  Galaxy-galaxy lensing constraints on the relation between baryons and dark matter in galaxies in the Red Sequence Cluster Survey 2 , 2011, 1107.4093.

[63]  T. Schrabback,et al.  COSMOS weak-lensing constraints on modified gravity , 2010, 1012.5854.

[64]  Gong-Bo Zhao,et al.  N-body simulations for f(R) gravity using a self-adaptive particle-mesh code. , 2010, 1011.1257.

[65]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[66]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .

[67]  C. Skordis,et al.  Linear growth rate of structure in parametrized post-Friedmannian universes , 2010, 1003.4231.

[68]  Rachel Mandelbaum,et al.  Confirmation of general relativity on large scales from weak lensing and galaxy velocities , 2010, Nature.

[69]  P. Schneider,et al.  COSEBIs: Extracting the full E-/B-mode information from cosmic shear correlation functions , 2010, 1002.2136.

[70]  R. Mandelbaum,et al.  Algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering , 2009, 0911.4973.

[71]  R. Mandelbaum,et al.  Precision cluster mass determination from weak lensing , 2009, 0911.4972.

[72]  F. Schmidt Self-Consistent Cosmological Simulations of DGP Braneworld Gravity , 2009, 0905.0858.

[73]  Gong-Bo Zhao,et al.  Searching for modified growth patterns with tomographic surveys , 2008, 0809.3791.

[74]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[75]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[76]  A. Mazure,et al.  A test of the nature of cosmic acceleration using galaxy redshift distortions , 2008, Nature.

[77]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.

[78]  B. Jain,et al.  Observational Tests of Modified Gravity , 2007, 0709.2375.

[79]  A. Silvestri,et al.  The pattern of growth in viable f(R) cosmologies , 2007, 0709.0296.

[80]  Scott Dodelson,et al.  Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. , 2007, Physical review letters.

[81]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[82]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[83]  E. Linder Cosmic growth history and expansion history , 2005, astro-ph/0507263.

[84]  J. Brinkmann,et al.  Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing , 2005, astro-ph/0501201.

[85]  H. Hoekstra,et al.  Properties of Galaxy Dark Matter Halos from Weak Lensing , 2003, astro-ph/0310756.

[86]  G. Bernstein,et al.  The skewness of the aperture mass statistic , 2003, astro-ph/0307393.

[87]  Bonn,et al.  Analysis of two-point statistics of cosmic shear - I. Estimators and covariances , 2002, astro-ph/0206182.

[88]  Avishai Dekel,et al.  Stochastic Nonlinear Galaxy Biasing , 1998, astro-ph/9806193.

[89]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[90]  P. Steinhardt,et al.  Cluster Abundance Constraints on Quintessence Models , 1998, astro-ph/9804015.

[91]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[92]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[93]  Steven Weinberg,et al.  The Cosmological Constant Problem , 1989 .

[94]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[95]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[96]  J. Bardeen,et al.  Gauge Invariant Cosmological Perturbations , 1980 .

[97]  B. Paczyński,et al.  An evolution free test for non-zero cosmological constant , 1979, Nature.