A Khasminskii type averaging principle for stochastic reaction–diffusion equations

= g(Xf (t), Y8(t)), Y8(O) y e I~k for some parameter 0 0. But in applications that is more interesting is the behavior of X, (t) for t in intervals of order e-1 or even larger. Actually, it is indeed on those time scales that the most significant changes happen, such as exit from the neighborhood of an equilibrium point or of a periodic trajectory. With the natural time scaling t F t/E, if we set XE(t) := Xe(t/s) and ', (t) := Y(t/s), (1.1) can be rewritten as dX, (t) = b(X,. (t), Y(t)), Xe(O) = x E Rn, (1.2) dd.t. 1 dtye YY I Y g Oro (t), Y,, (0), F (0)= y E R'k

[1]  J. Zabczyk,et al.  Wong-Zakai approximations of stochastic evolution equations , 2006 .

[2]  J. Fontbona Nonlinear martingale problems involving singular integrals , 2003 .

[3]  S. Cerrai Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term , 2003 .

[4]  N. Bogolyubov,et al.  Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .

[5]  Jon Juel Thomsen,et al.  Vibration Induced Sliding: Theory and Experiment for a Beam with a Spring-Loaded Mass , 1998 .

[6]  Mark Levi,et al.  Geometry and physics of averaging with applications , 1999 .

[7]  M. Hansen Effect of high-frequency excitation on natural frequencies of spinning discs , 2000 .

[8]  A. Millet,et al.  On a nonlinear stochastic wave equation in the plane: existence and uniqueness of the solution , 2001 .

[9]  I. Blekhman Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications , 2000 .

[10]  Andrey L. Piatnitski,et al.  Khasminskii–Whitham averaging for randomly perturbed KdV equation , 2007, 0710.3869.

[11]  D. Tcherniak THE INFLUENCE OF FAST EXCITATION ON A CONTINUOUS SYSTEM , 1999 .

[12]  M. Freidlin,et al.  Long-Time Behavior of Weakly Coupled Oscillators , 2006 .

[13]  N. DeClaris,et al.  Asymptotic methods in the theory of non-linear oscillations , 1963 .

[14]  A. Veretennikov,et al.  ON THE AVERAGING PRINCIPLE FOR SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS , 1991 .

[15]  Peszat Szymon Existence and uniqueness of the solution for stochastic equations on banach spaces , 1995 .

[16]  Mark Freidlin,et al.  On stochastic behavior of perturbed Hamiltonian systems , 2000, Ergodic Theory and Dynamical Systems.

[17]  K. Elworthy ERGODICITY FOR INFINITE DIMENSIONAL SYSTEMS (London Mathematical Society Lecture Note Series 229) By G. Da Prato and J. Zabczyk: 339 pp., £29.95, LMS Members' price £22.47, ISBN 0 521 57900 7 (Cambridge University Press, 1996). , 1997 .

[18]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[19]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[20]  Vladimir I. Arnold,et al.  Mathematical aspects of classical and celestial mechanics (2nd ed.) , 1997 .

[21]  W. Flügge Handbook of Engineering Mechanics , 1962 .

[22]  Mark Freidlin,et al.  On Stable Oscillations and Equilibriums Induced by Small Noise , 2001 .

[23]  Y. Kifer,et al.  Diffusion approximation for slow motion in fully coupled averaging , 2004 .

[24]  S. Cerrai Second Order Pde's in Finite and Infinite Dimension: A Probabilistic Approach , 2001 .

[25]  S. Cerrai Asymptotic Behavior of Systems of Stochastic Partial Differential Equations with Multiplicative Noise , 2005 .

[26]  Yuri Kifer,et al.  STOCHASTIC VERSIONS OF ANOSOV'S AND NEISTADT'S THEOREMS ON AVERAGING , 2001 .

[27]  I. I. Gubanova,et al.  Stability and Oscillations of Elastic Systems : Paradoxes Fallacies and New Concepts , 1965 .

[28]  Jakob Søndergaard Jensen,et al.  NON-LINEAR DYNAMICS OF THE FOLLOWER-LOADED DOUBLE PENDULUM WITH ADDED SUPPORT-EXCITATION , 1998 .

[29]  J. J. Thomsen USING FAST VIBRATIONS TO QUENCH FRICTION-INDUCED OSCILLATIONS , 1999 .

[30]  V. Volosov,et al.  AVERAGING IN SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS , 1962 .

[31]  Slow Effects of Fast Harmonic Excitation for Elastic Structures , 1998 .

[32]  A. Fidlin ON ASYMPTOTIC PROPERTIES OF SYSTEMS WITH STRONG AND VERY STRONG HIGH-FREQUENCY EXCITATION , 2000 .

[33]  W. Barrie Fraser,et al.  The ‘Indian rope trick’ for a parametrically excited flexible rod: linearized analysis , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  D. J. Acheson,et al.  Multiple-nodding oscillations of a driven inverted pendulum , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[35]  Brian F. Feeny,et al.  QUENCHING STICK–SLIP CHAOS WITH DITHER , 2000 .

[36]  Jon Juel Thomsen VIBRATION SUPPRESSION BY USING SELF-ARRANGING MASS: EFFECTS OF ADDING RESTORING FORCE , 1996 .

[37]  Sergey Sorokin,et al.  Dynamics of elastic beams with controlled distributed stiffness parameters , 1997 .

[38]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[39]  R. Z. Khasminskij On the principle of averaging the Itov's stochastic differential equations , 1968, Kybernetika.

[40]  I. Gyöngy,et al.  Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .

[41]  Jan Seidler,et al.  An averaging principle for stochastic evolution equations. I. , 1990 .

[42]  J. Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Invariant measures for stochastic evolution equations , 1996 .

[43]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[44]  Alexander Veprik,et al.  Damping of beam forced vibration by a moving washer , 1993 .

[45]  Giuseppe Da Prato,et al.  Stochastic Partial Differential Equations and Applications - VII , 2005 .

[46]  Dmitri Tcherniak,et al.  Stiffening Effects of High-Frequency Excitation: Experiments for an Axially Loaded Beam , 2000 .