Features of a reattaching turbulent shear layer subject to an adverse pressure gradient

Experimental data have been obtained in an incompressible turbulent flow over a rearward-facing step with superimposed adverse pressure gradient. Mean velocities, Reynolds stresses and triple-products measured by a laser Doppler velocimeter are presented for two cases of adverse pressure gradient. Mixing lengths, eddy viscosities, production, convection, turbulent diffusion, and dissipation terms are extracted from the data. These data are compared with various mixing length and eddy-viscosity turbulence models. Numerical calculations incorporating the k-epsilon and the algebraic-stress turbulence models are compared with the data. When determining quantities of engineering interest, the modified algebraic-stress model (ASM) is a significant improvement over the unmodified ASM and the unmodified k-epsilon model