Discovery of Nanomolar DCAF1 Small Molecule Ligands.
暂无分享,去创建一个
Anthony D. Keefe | Christopher J. Mulhern | A. Keefe | G. Poda | C. Arrowsmith | M. Vedadi | M. Szewczyk | J. Cuozzo | J. Guilinger | Marie-Aude Guié | Ying Zhang | D. Barsyte-Lovejoy | A. Dong | L. Hoffer | Punit Saraon | S. Ackloo | M. von Rechenberg | A. Mamai | V. Santhakumar | R. Marcellus | S. Kimani | J. Disch | Vaibhavi Rathod | L. Halabelian | B. Wilson | P. Brown | Mohammed Mohammed | Alice Shi Ming Li | Pratik G. Modh | M. Noureldin | Héctor González-Álvarez | Héctor González-Álvarez | Ahmed Mamai | John P Guilinger | Moritz von Rechenberg | Jeremy S Disch | Christopher J Mulhern | Belinda L Slakman | John W Cuozzo | Aiping Dong | Gennady Poda | Punit Saraon | Manish Mittal | Pratik Modh | Bhashant Patel | Magdalena M Szewczyk | Dalia Barsyte-Lovejoy | Richard Marcellus | Marie-Aude Guié | Anthony D Keefe | Peter J Brown | Levon Halabelian | Rima Al-Awar | Masoud Vedadi | B. Slakman | R. Al-Awar | Brian J. Wilson | Manish Mittal | A. Li | Magdalena M. Szewczyk
[1] S. Schreiber,et al. Targeted Protein Degradation by Electrophilic PROTACs that Stereoselectively and Site-Specifically Engage DCAF1. , 2022, Journal of the American Chemical Society.
[2] A. Hutchinson,et al. Production of Recombinant PRMT Proteins using the Baculovirus Expression Vector System. , 2021, Journal of visualized experiments : JoVE.
[3] H. Lenz,et al. VprBP directs epigenetic gene silencing through histone H2A phosphorylation in colon cancer , 2021, Molecular oncology.
[4] Xiaohong Zhou,et al. HIV-1 Vpr activates host CRL4-DCAF1 E3 ligase to degrade histone deacetylase SIRT7 , 2020, Virology Journal.
[5] B. Schulman,et al. NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. , 2020, Current opinion in structural biology.
[6] A. Ciulli,et al. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones , 2020, SLAS discovery : advancing life sciences R & D.
[7] C. Crews,et al. PROTACs: An Emerging Therapeutic Modality in Precision Medicine. , 2020, Cell chemical biology.
[8] Daohong Zhou,et al. PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics , 2020, Oncogene.
[9] Xia Tian,et al. Machine learning on DNA-encoded libraries: A new paradigm for hit-finding , 2020, Journal of medicinal chemistry.
[10] Danhui Ma,et al. The PROTAC technology in drug development , 2019, Cell biochemistry and function.
[11] P. Swanson,et al. DCAF1 (VprBP): emerging physiological roles for a unique dual-service E3 ubiquitin ligase substrate receptor , 2018, Journal of molecular cell biology.
[12] Kris Zimmerman,et al. CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide. , 2017, ACS chemical biology.
[13] N. Zheng,et al. Ubiquitin Ligases: Structure, Function, and Regulation. , 2017, Annual review of biochemistry.
[14] Diana Gikunju,et al. Discovery of a Potent BTK Inhibitor with a Novel Binding Mode by Using Parallel Selections with a DNA‐Encoded Chemical Library , 2017, Chembiochem : a European journal of chemical biology.
[15] Delowar Hossain,et al. Cep78 controls centrosome homeostasis by inhibiting EDD‐DYRK2‐DDB1VprBP , 2017, EMBO reports.
[16] A. Gronenborn,et al. The DDB1–DCAF1–Vpr–UNG2 crystal structure reveals how HIV-1 Vpr steers human UNG2 toward destruction , 2016, Nature Structural &Molecular Biology.
[17] Jeremy L. Jenkins,et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide , 2014, Nature.
[18] Jonathan A. Cooper,et al. Merlin/NF2 loss-driven tumorigenesis linked to CRL4(DCAF1)-mediated inhibition of the hippo pathway kinases Lats1 and 2 in the nucleus. , 2014, Cancer cell.
[19] Nouri Neamati,et al. VprBP has intrinsic kinase activity targeting histone H2A and represses gene transcription. , 2013, Molecular cell.
[20] P. Swanson,et al. VprBP (DCAF1): a promiscuous substrate recognition subunit that incorporates into both RING-family CRL4 and HECT-family EDD/UBR5 E3 ubiquitin ligases , 2013, BMC Molecular Biology.
[21] H. J. Sharifi,et al. The HIV-1 protein Vpr targets the endoribonuclease Dicer for proteasomal degradation to boost macrophage infection. , 2013, Virology.
[22] Xiaohong Zhou,et al. A novel DCAF1‐binding motif required for Vpx‐mediated degradation of nuclear SAMHD1 and Vpr‐induced G2 arrest , 2012, Cellular microbiology.
[23] Matthias Rarey,et al. A consistent description of HYdrogen bond and DEhydration energies in protein–ligand complexes: methods behind the HYDE scoring function , 2012, Journal of Computer-Aided Molecular Design.
[24] M. Giovannini,et al. Merlin/NF2 Functions Upstream of the Nuclear E3 Ubiquitin Ligase CRL4DCAF1 to Suppress Oncogenic Gene Expression , 2011, Science Signaling.
[25] B. Kuhn,et al. A Medicinal Chemist’s Guide to Molecular Interactions , 2010, Journal of medicinal chemistry.
[26] Jonathan A. Cooper,et al. Merlin/NF2 Suppresses Tumorigenesis by Inhibiting the E3 Ubiquitin Ligase CRL4DCAF1 in the Nucleus , 2010, Cell.
[27] C. McCall,et al. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. , 2006, Genes & development.
[28] M. MacCoss,et al. Molecular architecture and assembly of the DDB1–CUL4A ubiquitin ligase machinery , 2006, Nature.
[29] J. Chen,et al. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. , 2006, Molecular cell.
[30] Katrin Stierand,et al. Molecular complexes at a glance: automated generation of two-dimensional complex diagrams , 2006, Bioinform..
[31] Conrad C. Huang,et al. UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..