Hydrogen-enhanced decohesion mechanism of the Ni-Ni3X interfaces in precipitation-hardened Ni-based alloys

[1]  Jun Zhang,et al.  New insights into the microstructural stability based on the element segregation behavior at γ/γ′ interface in Ni-based single crystal superalloys with Ru addition , 2023, Journal of Materials Science & Technology.

[2]  Yanan Zhao,et al.  New alloy design approach to inhibiting hot cracking in laser additive manufactured nickel-based superalloys , 2023, Acta Materialia.

[3]  Yuren Wen,et al.  Cr-promoted formation of B2+L21 composite nanoprecipitates and enhanced mechanical properties in ferritic alloy , 2022, Acta Materialia.

[4]  Yinsheng Yu,et al.  Revealing mechanical property–strengthening micro-mechanism of Ni/Ni3Al-based alloys by molecular dynamics simulation , 2022, Journal of Molecular Modeling.

[5]  H. Bei,et al.  Composition design and microstructure of Ni-based single crystal superalloy with low specific weight—numerical modeling and experimental validation , 2022, Journal of Materials Research.

[6]  Q. Guo,et al.  Microstructure-performance relationships in Ni-based superalloy with coprecipitation of γ' and γ'' phases , 2022, Materials Science and Engineering: A.

[7]  Y. Pei,et al.  The Strengthening Effects of Re-X (X=Mo, W, Cr Ta, Re) Mediated by Their Local Partitioning Behaviors at Γ/Γ' Interface In Ni-Based Single Crystal Superalloys , 2022, SSRN Electronic Journal.

[8]  Yongchang Liu,et al.  Precipitation sequences in rapidly solidified Allvac 718Plus alloy during solution treatment , 2022, Journal of Materials Science & Technology.

[9]  Yongchang Liu,et al.  Short-term corrosion behavior of polycrystalline Ni3Al-based superalloy in sulfur-containing atmosphere , 2022, Intermetallics.

[10]  R. Pippan,et al.  Grain boundary segregation in Ni-base alloys: A combined atom probe tomography and first principles study , 2021, Acta Materialia.

[11]  C. Race,et al.  Segregation of Ni and Si to coherent bcc Fe-Cu interfaces from density functional theory , 2021 .

[12]  R. Pippan,et al.  The effect of solute atoms on the bulk and grain boundary cohesion in Ni: implications for hydrogen embrittlement , 2021, Materialia.

[13]  R. Ran,et al.  Effects of yttrium addition on microstructure and mechanical properties of Inconel 718 alloy produced by sub-rapid solidification , 2021, Materials Science and Engineering: A.

[14]  Minsheng Huang,et al.  Effect of multiple hydrogen embrittlement mechanisms on crack propagation behavior of FCC metals: Competition vs. synergy , 2021 .

[15]  K. Takai,et al.  Quantities and distribution of strain-induced vacancies and dislocations enhanced by hydrogen in iron , 2021 .

[16]  Yongchang Liu,et al.  The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure , 2021 .

[17]  Yongchang Liu,et al.  Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys , 2021 .

[18]  R. Pippan,et al.  Hydrogen segregation near a crack tip in nickel , 2021 .

[19]  Yue Zhang,et al.  Characterization of precipitation in gradient Inconel 718 superalloy , 2021, Materials Science and Engineering: A.

[20]  R. Pippan,et al.  A theoretical insight into hydrogen clustering at defects in Ni , 2020 .

[21]  R. Pippan,et al.  Hydrogen-enhanced intergranular failure of sulfur-doped nickel grain boundary: In situ electrochemical micro-cantilever bending vs. DFT , 2020 .

[22]  R. Pippan,et al.  Verification of the generalised chemical potential for stress-driven hydrogen diffusion in nickel , 2020 .

[23]  R. Ran,et al.  Microstructure, precipitates and mechanical properties of Inconel 718 alloy produced by two-stage cold rolling method , 2020 .

[24]  Yan Ma,et al.  On the hydrogen embrittlement behavior of nickel-based alloys: Alloys 718 and 725 , 2020 .

[25]  K. Verbeken,et al.  Microstructural based hydrogen diffusion and trapping models applied to Fe–C X alloys , 2020, Journal of Alloys and Compounds.

[26]  Nicholas C. Ferreri,et al.  Determining volume fractions of γ, γ′, γ″, δ, and MC-carbide phases in Inconel 718 as a function of its processing history using an advanced neutron diffraction procedure , 2020 .

[27]  S. Ringer,et al.  On the early stages of precipitation during direct ageing of Alloy 718 , 2020, 2103.02763.

[28]  N. Sridhar,et al.  Hydrogen embrittlement of 718 under cathodic polarization , 2020 .

[29]  S. Primig,et al.  Microstructure-property relationships in directly aged Alloy 718 turbine disks , 2020 .

[30]  A. Gil,et al.  Influence of High-Temperature Exposure on the Microstructure of ATI 718Plus Superalloy Studied by Electron Microscopy and Tomography Techniques , 2019, Journal of Materials Engineering and Performance.

[31]  Yongchang Liu,et al.  Cyclic oxidation behavior of Ni3Al-basedsuperalloy , 2019, Vacuum.

[32]  R. Pippan,et al.  Thermodynamic and mechanical stability of Ni3X-type intermetallic compounds , 2019, Intermetallics.

[33]  D. Wan,et al.  Effect of electrochemical charging on the hydrogen embrittlement susceptibility of alloy 718 , 2019, Acta Materialia.

[34]  R. Pippan,et al.  Hydrogen-enhanced decohesion mechanism of the special Σ5(0 1 2)[1 0 0] grain boundary in Ni with Mo and C solutes , 2019, Computational Materials Science.

[35]  K. Verbeken,et al.  Model-based interpretation of thermal desorption spectra of Fe-C-Ti alloys , 2019, Journal of Alloys and Compounds.

[36]  A. Nagao,et al.  Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials , 2019, Acta Materialia.

[37]  E. Akiyama,et al.  Tensile mechanical properties and fracture behaviors of nickel-based superalloy 718 in the presence of hydrogen , 2018, International Journal of Hydrogen Energy.

[38]  L. Romaner,et al.  Kinetics of grain boundary segregation in multicomponent systems – The example of a Mo-C-B-O system , 2018, Scripta Materialia.

[39]  David Gustafsson,et al.  Fatigue crack growth behaviour of an alternative single crystal nickel base superalloy , 2018 .

[40]  Minsheng Huang,et al.  Hydrogen-enhanced interfacial damage in Ni-based single crystal superalloy , 2018 .

[41]  Zhimei Sun,et al.  Vacancy mediated alloying strengthening effects on γ/γ′ interface of Ni-based single crystal superalloys: A first-principles study , 2017 .

[42]  P. Puschnig,et al.  Ab initio search for cohesion-enhancing impurity elements at grain boundaries in molybdenum and tungsten , 2016 .

[43]  A. Ruban,et al.  Effective interactions and atomic ordering in Ni-rich Ni-Re alloys , 2016 .

[44]  D. Ponge,et al.  Multi-scale and spatially resolved hydrogen mapping in a Ni–Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718 , 2016 .

[45]  L. H. Almeida,et al.  Hydrogen embrittlement in nickel-based superalloy 718: Relationship between γ′ + γ″ precipitation and the fracture mode , 2015 .

[46]  Shuai Wang,et al.  Hydrogen Embrittlement Understood , 2015, Metallurgical and Materials Transactions A.

[47]  D. Connétable,et al.  Segregation of hydrogen to defects in nickel using first-principles calculations: The case of self-interstitials and cavities , 2014 .

[48]  Christine Blanc,et al.  DFT study of the solubility of hydrogen and carbon in Ni3Nb-D0a and Ni3Nb-D022 systems , 2014 .

[49]  D. Connétable,et al.  Effect of trapping and temperature on the hydrogen embrittlement susceptibility of alloy 718 , 2014 .

[50]  H. Hou,et al.  A first-principles study on interfacial properties of Ni(001)/Ni3Nb(001) , 2014 .

[51]  A. Ruban,et al.  Role of magnetism in Cu precipitation in alpha-Fe , 2013 .

[52]  J. Scully,et al.  Hydrogen diffusion and trapping in a precipitation-hardened nickel–copper–aluminum alloy Monel K-500 (UNS N05500) , 2013 .

[53]  Zushu Hu,et al.  The correlation between Re and P and their synergetic effect on the rupture strength of the γ-Ni/γ′-Ni3Al interface , 2012 .

[54]  J. Svoboda,et al.  Modelling for hydrogen diffusion in metals with traps revisited , 2012 .

[55]  U. Waghmare,et al.  First-principles understanding of environmental embrittlement of the Ni/Ni3Al interface , 2010 .

[56]  Wang Chong-yu,et al.  First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers ⁄ , 2009 .

[57]  Xianbin Li,et al.  First-principles study of the influence of lattice misfit on the segregation behaviors of hydrogen and boron in the Ni–Ni3Al system , 2007 .

[58]  A. Soh,et al.  First-principles study of alloying effect of Re on properties of Ni/Ni3Al interface , 2006 .

[59]  Zushu Hu,et al.  First-principles study of the properties of Ni/Ni3Al interface doped with B or P , 2006 .

[60]  Zi-kui Liu,et al.  Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations , 2004 .

[61]  Dian‐sen Li,et al.  Energetics and electronic structure of grain boundaries and surfaces of B- and H-doped Ni3Al , 2003 .

[62]  H. Ogi,et al.  Elastic constant measurement of Ni-base superalloy with the RUS and mode selective EMAR methods. , 2002, Ultrasonics.

[63]  Chong-yu Wang,et al.  The effects of boron and hydrogen on the embrittlement of polycrystalline Ni3Al , 2000 .

[64]  J. Hafner,et al.  Structural, electronic and magnetic properties of nickel surfaces , 1999 .

[65]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[66]  S. J. Zhou,et al.  Embedded atom calculations of unstable stacking fault energies and surface energies in intermetallics , 1997 .

[67]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[68]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[69]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[70]  Neville Reid Moody,et al.  COMMENT: Trapping of hydrogen to lattice defects in nickel , 1995 .

[71]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[72]  R. Mclellan,et al.  THE SOLUBILITY OF HYDROGEN IN NI3AL , 1994 .

[73]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[74]  T. Takasugi,et al.  Environmental embrittlement of boron-doped Ni_3(Al, Ti) single crystals at room temperature , 1993 .

[75]  M. Daw,et al.  Application of the embedded atom method to Ni_3Al , 1987 .

[76]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[77]  S. Stafford,et al.  The solubility of hydrogen in nickel and cobalt , 1974 .

[78]  G. Ertl,et al.  Adsorption of hydrogen on nickel single crystal surfaces , 1974 .

[79]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[80]  Leonard Bessemer Pfeil The Effect of Occluded Hydrogen on the Tensile Strength of Iron , 1926 .

[81]  D. G. McCartney,et al.  Alloys-by-design: Application to new superalloys for additive manufacturing , 2021 .

[82]  A. Lozovoi,et al.  First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion , 2015 .

[83]  C. Wang,et al.  Ni/Ni(3)Al interface: A density functional theory study , 2009 .

[84]  Wang Chongyu,et al.  First-principles investigation of hydrogen embrittlement in polycrystalline Ni 3 Al , 1998 .

[85]  James R. Rice,et al.  Embrittlement of interfaces by solute segregation , 1989 .