3-D Mesh Adaptation on Multiple Weak Discontinuities and Boundary Layers

This paper presents new developments within an anisotropic mesh adaptation methodology, made essentially by the introduction of a metric modification and a shock-filter model that allow crisp capturing of weak shocks, as well as boundary layers and wakes. Inviscid and laminar external flow tests are used to demonstrate the efficiency of the method.

[2]  Mohamed Cheriet,et al.  Enhanced and restored signals as a generalized solution for shock filter models. Part I—existence and uniqueness result of the Cauchy problem , 2003 .

[3]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .

[4]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[5]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[6]  Timothy J. Baker,et al.  Mesh adaptation strategies for problems in fluid dynamics , 1997 .

[7]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[8]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .

[9]  D. Venditti,et al.  Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow , 2000 .

[10]  Mohamed Cheriet,et al.  Enhanced and restored signals as a generalized solution for shock filter models. Part II - numerical study , 2003 .

[11]  Timothy J. Barth,et al.  A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems , 2000 .

[12]  Mohamed Cheriet,et al.  Numerical Schemes of Shock Filter Models for Image Enhancement and Restoration , 2003, Journal of Mathematical Imaging and Vision.

[13]  Frédéric Hecht,et al.  Anisotropic adaptive mesh generation in two dimensions for CFD , 1996 .

[14]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[15]  Michel Fortin Anisotropic mesh adaptation through hierarchical error estimators , 2001 .

[16]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[17]  W. K. Anderson,et al.  Grid convergence for adaptive methods , 1991 .

[18]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[19]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[20]  Olivier Pironneau,et al.  Mesh adaption and automatic differentiation in a CAD-free framework for optimal shape design , 1999 .

[21]  Herman Deconinck,et al.  Adaptive unstructured mesh algorithms and SUPG finite element method for compressible high reynolds number flows , 1997 .

[22]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[23]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .