Vietoris–Rips Complexes of Planar Point Sets

AbstractFix a finite set of points in Euclidean n-space $\mathbb{E}^{n}$ , thought of as a point-cloud sampling of a certain domain $D\subset\mathbb{E}^{n}$ . The Vietoris–Rips complex is a combinatorial simplicial complex based on proximity of neighbors that serves as an easily-computed but high-dimensional approximation to the homotopy type of D. There is a natural “shadow” projection map from the Vietoris–Rips complex to $\mathbb{E}^{n}$ that has as its image a more accurate n-dimensional approximation to the homotopy type of D.We demonstrate that this projection map is 1-connected for the planar case n=2. That is, for planar domains, the Vietoris–Rips complex accurately captures connectivity and fundamental group data. This implies that the fundamental group of a Vietoris–Rips complex for a planar point set is a free group. We show that, in contrast, introducing even a small amount of uncertainty in proximity detection leads to “quasi”-Vietoris–Rips complexes with nearly arbitrary fundamental groups. This topological noise can be mitigated by examining a pair of quasi-Vietoris–Rips complexes and using ideas from persistent topology. Finally, we show that the projection map does not preserve higher-order topological data for planar sets, nor does it preserve fundamental group data for point sets in dimension larger than three.

[1]  L. Vietoris Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen , 1927 .

[2]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[3]  J. Eckhoff Helly, Radon, and Carathéodory Type Theorems , 1993 .

[4]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[5]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1994, ACM Trans. Graph..

[6]  J. Hausmann On the Vietoris-Rips complexes and a Cohomology Theory for metric spaces , 1996 .

[7]  A. Björner Topological methods , 1996 .

[8]  Lali Barrière,et al.  Robust position-based routing in wireless Ad Hoc networks with unstable transmission ranges , 2001, DIALM '01.

[9]  Topological Methods , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[10]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.

[11]  Leonidas J. Guibas,et al.  Locating and bypassing routing holes in sensor networks , 2004, IEEE INFOCOM 2004.

[12]  Leonidas J. Guibas,et al.  Persistence Barcodes for Shapes , 2005, Int. J. Shape Model..

[13]  Sriram V. Pemmaraju,et al.  Local approximation schemes for topology control , 2006, PODC '06.

[14]  Erik Carlsson,et al.  c ○ World Scientific Publishing Company AN ALGEBRAIC TOPOLOGICAL METHOD FOR FEATURE IDENTIFICATION , 2022 .

[15]  Vin de Silva,et al.  Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology , 2006, Int. J. Robotics Res..

[16]  Vin de Silva,et al.  On the Local Behavior of Spaces of Natural Images , 2007, International Journal of Computer Vision.

[17]  Abubakr Muhammad,et al.  Dynamic Coverage Verification in Mobile Sensor Networks Via Switched Higher Order Laplacians , 2007, Robotics: Science and Systems.

[18]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[19]  Erin W. Chambers,et al.  Testing contractibility in planar rips complexes , 2008, SCG '08.

[20]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[21]  Roger Wattenhofer,et al.  Ad hoc networks beyond unit disk graphs , 2008, Wirel. Networks.

[22]  S. Gersten Essays in Group Theory , 2011 .

[23]  R. Ho Algebraic Topology , 2022 .