Can the Gravitational Effect of Planet X be Detected in Current-era Tracking of the Known Major and Minor Planets?

Using Fisher information matrices, we forecast the uncertainties σ M on the measurement of a “Planet X” at heliocentric distance d X via its tidal gravitational field’s action on the known planets. Using planetary measurements currently in hand, including ranging from the Juno, Cassini, and Mars-orbiting spacecraft, we forecast a median uncertainty (over all sky positions) of σM=0.22M⊕(dx/400au)3. A 5σ detection of a 5 M ⊕ Planet X at d X = 400 au should be possible over the full sky but over only 5% of the sky at d X = 800 au. The gravity of an undiscovered Earth- or Mars-mass object should be detectable over 90% of the sky to a distance of 260 or 120 au, respectively. Upcoming Mars ranging improves these limits only slightly. We also investigate the power of high-precision astrometry of ≈8000 Jovian Trojans over the 2023–2035 period from the upcoming Legacy Survey of Space and Time (LSST). We find that the dominant systematic errors in optical Trojan astrometry (photocenter motion, nongravitational forces, and differential chromatic refraction) can be solved internally with minimal loss of information. The Trojan data allow cross-checks with Juno/Cassini/Mars ranging, but do not significantly improve the best achievable σ M values until they are ≳10× more accurate than expected from LSST. The ultimate limiting factor in searches for a Planet X tidal field is confusion with the tidal field created by the fluctuating quadrupole moment of the Kuiper Belt as its members orbit. This background will not, however, become the dominant source of uncertainty until the data get substantially better than they are today.

[1]  Kecheng Zhang,et al.  A Rogue Planet Helps to Populate the Distant Kuiper Belt , 2022, The Astrophysical Journal Letters.

[2]  K. Batygin,et al.  A Search for Planet Nine using the Zwicky Transient Facility Public Archive , 2021, Astronomical Journal.

[3]  D. Gerdes,et al.  A Search of the Full Six Years of the Dark Energy Survey for Outer Solar System Objects , 2021, The Astrophysical Journal Supplement Series.

[4]  D. Vokrouhlický,et al.  Ephemeris and hazard assessment for near-Earth asteroid (101955) Bennu based on OSIRIS-REx data , 2021 .

[5]  J. Dunkley,et al.  The Atacama Cosmology Telescope: A Search for Planet 9 , 2021, The Astrophysical Journal.

[6]  A. Sickafoose,et al.  Occultation of a Large Star by the Large Plutino (28978) Ixion on 2020 October 13 UTC , 2021, The Astronomical Journal.

[7]  W. Folkner,et al.  The JPL Planetary and Lunar Ephemerides DE440 and DE441 , 2021 .

[8]  D. Gerdes,et al.  Reducing Ground-based Astrometric Errors with Gaia and Gaussian Processes , 2020, The Astronomical Journal.

[9]  W. Grundy,et al.  The Eris/Dysnomia system I: The orbit of Dysnomia , 2020, Icarus.

[10]  K. Batygin,et al.  The Orbit of Planet Nine , 2019, The Astronomical Journal.

[11]  A. Fienga,et al.  New constraints on the location of P9 obtained with the INPOP19a planetary ephemeris , 2020, Astronomy & Astrophysics.

[12]  A. Konopliv,et al.  The Mercury gravity field, orientation, love number, and ephemeris from the MESSENGER radiometric tracking data , 2020 .

[13]  C. Trujillo,et al.  Mutual orbit orientations of transneptunian binaries , 2019 .

[14]  D. Ragozzine,et al.  The mutual orbit, mass, and density of transneptunian binary Gǃkúnǁ'hòmdímà (229762 2007 UK126) , 2019, Icarus.

[15]  M. Holman,et al.  A TESS Search for Distant Solar System Planets: A Feasibility Study , 2019, Research Notes of the AAS.

[16]  H. Rein,et al.  REBOUNDx: a library for adding conservative and dissipative forces to otherwise symplectic N-body integrations , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  G. Laughlin,et al.  The Case for a Large-scale Occultation Network , 2019, The Astronomical Journal.

[18]  M. Schwamb,et al.  The mass and density of the dwarf planet (225088) 2007 OR10 , 2019, Icarus.

[19]  F. Adams,et al.  The planet nine hypothesis , 2019, Physics Reports.

[20]  S. Sheppard,et al.  The Albedos, Sizes, Colors, and Satellites of Dwarf Planets Compared with Newly Measured Dwarf Planet 2013 FY27 , 2018, The Astronomical Journal.

[21]  E. Pitjeva,et al.  Mass of the Kuiper belt , 2018, Celestial Mechanics and Dynamical Astronomy.

[22]  M. Granvik,et al.  OSSOS. VII. 800+ Trans-Neptunian Objects—The Complete Data Release , 2018, 1805.11740.

[23]  A. Conrad,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015 , 2018 .

[24]  P. Protopapas,et al.  A Dwarf Planet Class Object in the 21:5 Resonance with Neptune , 2017, 1709.05427.

[25]  F. Henry,et al.  “TNOs are Cool”: A survey of the trans-Neptunian region , 2010, Astronomy & Astrophysics.

[26]  David E. Smith,et al.  The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data , 2018 .

[27]  S. Tremaine,et al.  Producing Distant Planets by Mutual Scattering of Planetary Embryos , 2017, 1712.03961.

[28]  K. Volk,et al.  The Curiously Warped Mean Plane of the Kuiper Belt , 2017, 1704.02444.

[29]  D. Gerdes,et al.  Astrometric Calibration and Performance of the Dark Energy Camera , 2017, 1703.01679.

[30]  Kyler Kuehn,et al.  Discovery and Physical Characterization of a Large Scattered Disk Object at 92 au , 2017, 1702.00731.

[31]  Peter E. Nugent,et al.  SEARCHING FOR PLANET NINE WITH COADDED WISE AND NEOWISE-REACTIVATION IMAGES , 2016, 1611.00015.

[32]  Scott S. Sheppard,et al.  NEW EXTREME TRANS-NEPTUNIAN OBJECTS: TOWARD A SUPER-EARTH IN THE OUTER SOLAR SYSTEM , 2016, 1608.08772.

[33]  M. Holman,et al.  OBSERVATIONAL CONSTRAINTS ON PLANET NINE: CASSINI RANGE OBSERVATIONS , 2016, 1604.03180.

[34]  M. Holman,et al.  OBSERVATIONAL CONSTRAINTS ON PLANET NINE: ASTROMETRY OF PLUTO AND OTHER TRANS-NEPTUNIAN OBJECTS , 2016, 1603.09008.

[35]  H. Rein,et al.  Second-order variational equations for N-body simulations , 2016, 1603.03424.

[36]  A. Fienga,et al.  Constraints on the location of a possible 9th planet derived from the Cassini data , 2016, 1602.06116.

[37]  Michael E. Brown,et al.  EVIDENCE FOR A DISTANT GIANT PLANET IN THE SOLAR SYSTEM , 2016, 1601.05438.

[38]  C. M. Lisse,et al.  The Pluto system: Initial results from its exploration by New Horizons , 2015, Science.

[39]  A. Thirouin,et al.  The mutual orbit, mass, and density of the large transneptunian binary system Varda and Ilmarë , 2015, 1505.00510.

[40]  A. J. Drake,et al.  A SERENDIPITOUS ALL SKY SURVEY FOR BRIGHT OBJECTS IN THE OUTER SOLAR SYSTEM , 2015, 1501.00941.

[41]  Hanno Rein,et al.  ias15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits , 2014, 1409.4779.

[42]  W. Folkner,et al.  ASTROMETRY OF PLUTO FROM 1930–1951 OBSERVATIONS: THE LAMPLAND PLATE COLLECTION , 2014 .

[43]  R. A. Jacobson,et al.  THE ORBITS OF THE URANIAN SATELLITES AND RINGS, THE GRAVITY FIELD OF THE URANIAN SYSTEM, AND THE ORIENTATION OF THE POLE OF URANUS , 2014 .

[44]  Sami W. Asmar,et al.  The Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the Dawn tracking and optical data , 2014 .

[45]  C. Trujillo,et al.  A Sedna-like body with a perihelion of 80 astronomical units , 2014, Nature.

[46]  A. Bouchez,et al.  The mass, orbit, and tidal evolution of the Quaoar–Weywot system , 2012, 1211.1016.

[47]  M. L. N. Ashby,et al.  THE RESONANT TRANS-NEPTUNIAN POPULATIONS , 2012, 1205.7065.

[48]  Steward Observatory,et al.  “TNOs are Cool”: a survey of the trans-Neptunian region - VII. Size and surface characteristics of (90377) Sedna and 2010 EK139 , 2012, 1204.0899.

[49]  Benoit Carry,et al.  Density of asteroids , 2012, 1203.4336.

[50]  H. Rein,et al.  REBOUND: An open-source multi-purpose N-body code for collisional dynamics , 2011, 1110.4876.

[51]  A. Bieryla,et al.  THE CANADA–FRANCE ECLIPTIC PLANE SURVEY—FULL DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT , 2011 .

[52]  M. Zuber,et al.  Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters , 2011 .

[53]  J. Brimacombe,et al.  Size and albedo of Kuiper belt object 55636 from a stellar occultation , 2010, Nature.

[54]  Joel Wm. Parker,et al.  THE CANADA–FRANCE ECLIPTIC PLANE SURVEY—L3 DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT , 2009, 1108.4836.

[55]  E. M. Standish,et al.  Proposals for the masses of the three largest asteroids, the Moon-Earth mass ratio and the Astronomical Unit , 2009 .

[56]  D. Ragozzine,et al.  ORBITS AND MASSES OF THE SATELLITES OF THE DWARF PLANET HAUMEA (2003 EL61) , 2009, 0903.4213.

[57]  Robert A. Jacobson,et al.  THE ORBITS OF THE NEPTUNIAN SATELLITES AND THE ORIENTATION OF THE POLE OF NEPTUNE , 2008 .

[58]  T. Mukai,et al.  AN OUTER PLANET BEYOND PLUTO AND THE ORIGIN OF THE TRANS-NEPTUNIAN BELT ARCHITECTURE , 2007, 0712.2198.

[59]  S. Chesley,et al.  Astrometric masses of 21 asteroids, and an integrated asteroid ephemeris , 2007 .

[60]  Robert Jedicke,et al.  The Search for Distant Objects in the Solar System Using Spacewatch , 2007 .

[61]  D. W. Parcher,et al.  The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data , 2006 .

[62]  B. Gladman,et al.  Production of the Extended Scattered Disk by Rogue Planets , 2006 .

[63]  William F. Bottke,et al.  THE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics , 2006 .

[64]  P. Giles,et al.  Helioseismic Determination of the Solar Rotation Axis , 2005 .

[65]  A. Fitzsimmons,et al.  The edge of the Kuiper belt: the Planet X scenario , 2004 .

[66]  Nicole Capitaine,et al.  Expressions for IAU 2000 precession quantities , 2003 .

[67]  David Jewitt,et al.  The Albedo Distribution of Jovian Trojan Asteroids , 2003 .

[68]  M. Melita,et al.  The Existence of a Planet beyond 50 AU and the Orbital Distribution of the Classical Edgeworth–Kuiper-Belt Objects , 2002 .

[69]  T. Grav,et al.  Evidence for an Extended Scattered Disk , 2001, astro-ph/0103435.

[70]  A. Konopliv,et al.  Venus Gravity: 180th Degree and Order Model , 1999 .

[71]  D. Vokrouhlický,et al.  The Yarkovsky Seasonal Effect on Asteroidal Fragments: A Nonlinearized Theory for the Plane-parallel Case , 1998 .

[72]  F. Pijpers Helioseismic determination of the solar gravitational quadrupole moment , 1998, astro-ph/9804258.

[73]  Calyampudi R. Rao,et al.  Selected papers of C.R. Rao , 1996 .

[74]  E. Standish Planet X: No Dynamical Evidence in the Optical Observations , 1993 .

[75]  Jack Wisdom,et al.  Dynamical Stability in the Outer Solar System and the Delivery of Short Period Comets , 1993 .

[76]  D. Jewitt,et al.  Discovery of the candidate Kuiper belt object 1992 QB1 , 1993, Nature.

[77]  S. Tremaine,et al.  Dynamical limits on dark mass in the outer solar system , 1991 .

[78]  S. Tremaine,et al.  The Origin of Short-Period Comets , 1988 .

[79]  K. Aksnes,et al.  The longitude discrepancy for mutual satellite phenomena resolved , 1986 .

[80]  G. Valsecchi,et al.  Dynamics of comets: Their origin and evolution , 1985 .

[81]  I. Newton Philosophiæ naturalis principia mathematica , 1973 .

[82]  H. Ramsey,et al.  An Active Center and its Magnetic Field Recorded on 6 July 1965. , 1966 .

[83]  D. B. Holdridge,et al.  The astronomical unit determined by radar reflections from Venus , 1962 .

[84]  Fred L. Whipple,et al.  A comet model. I. The acceleration of Comet Encke , 1950 .

[85]  P. R. Peacock Selected Papers , 1949, Nature.