Query-Adaptive Fusion for Multimodal Search Search systems need to have the flexibility to adapt to each query so a search strategy that is likely to provide the most useful retrieval results can be employed.

We conduct a broad survey of query-adaptive search strategies in a variety of application domains, where the internal retrieval mechanisms used for search are adapted in response to the anticipated needs for each individual query experienced by the system. While these query-adaptive ap- proaches can range from meta-search over text collections to multimodal search over video databases, we propose that all such systems can be framed and discussed in the context of a single,unifiedframework.Inourpaper,wekeepaneyetowards the domain of video search, where search cues are available from a rich set of modalities, including textual speech transcripts, low-level visual features, and high-level semantic concept detectors. The relative efficacy of each of the modal- ities is highly variant between many types of queries. We observe that the state of the art in query-adaptive retrieval frameworks for video collections is highly dependent upon the definition of classes of queries, which are groups of queries that share similar optimal search strategies, while many applica- tions in text and web retrieval have included many advanced strategies, such as direct prediction of search method perfor- mance and inclusion of contextual cues from the searcher. We conclude that such advanced strategies previously developed for text retrieval have a broad range of possible applications in future research in multimodal video search.

[1]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[2]  Ellen M. Voorhees,et al.  Learning collection fusion strategies , 1995, SIGIR '95.

[3]  Shih-Fu Chang,et al.  Automatic discovery of query-class-dependent models for multimodal search , 2005, MULTIMEDIA '05.

[4]  Wei Dai,et al.  Joint categorization of queries and clips for web-based video search , 2006, MIR '06.

[5]  Oren Etzioni,et al.  The MetaCrawler architecture for resource aggregation on the Web , 1997 .

[6]  Ehud Rivlin,et al.  Placing search in context: the concept revisited , 2002, TOIS.

[7]  John R. Smith,et al.  Search and Progressive Image Retrieval from Distributed Image/Video Databases: The SPIRE Project , 1998, ECDL.

[8]  Apostol Natsev,et al.  Dynamic Multimodal Fusion in Video Search , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[9]  Tobun Dorbin Ng,et al.  Informedia at TRECVID 2003 : Analyzing and Searching Broadcast News Video , 2003, TRECVID.

[10]  Wei-Ying Ma,et al.  Probabilistic model for contextual retrieval , 2004, SIGIR '04.

[11]  Shih-Fu Chang,et al.  Video search reranking via information bottleneck principle , 2006, MM '06.

[12]  Klaus Obermayer,et al.  Efficient Query Delegation by Detecting Redundant Retrieval Strategies , 2007 .

[13]  Rong Yan,et al.  Probabilistic latent query analysis for combining multiple retrieval sources , 2006, SIGIR.

[14]  Amarnath Gupta,et al.  Virage image search engine: an open framework for image management , 1996, Electronic Imaging.

[15]  Ramesh Nallapati,et al.  Discriminative models for information retrieval , 2004, SIGIR '04.

[16]  Steve Lawrence,et al.  Context in Web Search , 2000, IEEE Data Eng. Bull..

[17]  Shih-Fu Chang,et al.  A reranking approach for context-based concept fusion in video indexing and retrieval , 2007, CIVR '07.

[18]  John Adcock,et al.  FXPAL Experiments for TRECVID 2004 , 2004, TRECVID.

[19]  Elad Yom-Tov,et al.  Learning to estimate query difficulty: including applications to missing content detection and distributed information retrieval , 2005, SIGIR '05.

[20]  Mor Naaman,et al.  Zurfer: mobile multimedia access in spatial, social and topical context , 2007, ACM Multimedia.

[21]  Ronan Cummins,et al.  An axiomatic comparison of learned term-weighting schemes in information retrieval: clarifications and extensions , 2007, Artificial Intelligence Review.

[22]  Tao Qin,et al.  Supervised rank aggregation , 2007, WWW '07.

[23]  Stephen E. Robertson,et al.  Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval , 1994, SIGIR '94.

[24]  Shih-Fu Chang,et al.  Visually Searching the Web for Content , 1997, IEEE Multim..

[25]  Reiner Kraft,et al.  Mining anchor text for query refinement , 2004, WWW '04.

[26]  Dong Xu,et al.  Columbia University TRECVID-2006 Video Search and High-Level Feature Extraction , 2006, TRECVID.

[27]  W. Bruce Croft Combining Approaches to Information Retrieval , 2002 .

[28]  Rong Yan,et al.  Multi-Lingual Broadcast News Retrieval , 2006, TRECVID.

[29]  Edward A. Fox,et al.  Combination of Multiple Searches , 1993, TREC.

[30]  Wei-Hao Lin,et al.  Confounded Expectations: Informedia at TRECVID 2004 , 2004, TRECVID.

[31]  Dennis Koelma,et al.  The MediaMill TRECVID 2008 Semantic Video Search Engine , 2008, TRECVID.

[32]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[33]  Shih-Fu Chang,et al.  MetaSEEk: a content-based metasearch engine for images , 1997, Electronic Imaging.

[34]  Shai Fine,et al.  Metasearch and Federation using Query Difficulty Prediction , 2005 .

[35]  John R. Smith,et al.  IBM Research TRECVID-2009 Video Retrieval System , 2009, TRECVID.

[36]  Ravi Kumar,et al.  Searching with context , 2006, WWW '06.

[37]  Rong Yan,et al.  Learning query-class dependent weights in automatic video retrieval , 2004, MULTIMEDIA '04.

[38]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[39]  Milind R. Naphade,et al.  Learning the semantics of multimedia queries and concepts from a small number of examples , 2005, MULTIMEDIA '05.

[40]  Myron Flickner,et al.  Query by Image and Video Content , 1995 .

[41]  Hinrich Schütze,et al.  Personalized search , 2002, CACM.

[42]  Farzin Maghoul,et al.  Y!Q: contextual search at the point of inspiration , 2005, CIKM '05.

[43]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[44]  Gang Wang,et al.  TRECVID 2004 Search and Feature Extraction Task by NUS PRIS , 2004, TRECVID.

[45]  In-Ho Kang,et al.  Query type classification for web document retrieval , 2003, SIGIR.

[46]  Jean-Luc Gauvain,et al.  The LIMSI Broadcast News transcription system , 2002, Speech Commun..

[47]  Chun Chen,et al.  Automatic Query Type Classification for Web Image Retrieval , 2007, 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE'07).

[48]  Amit Singhal,et al.  Pivoted document length normalization , 1996, SIGIR 1996.

[49]  Monika Henzinger,et al.  Analysis of a very large web search engine query log , 1999, SIGF.

[50]  Laura A. Dabbish,et al.  Labeling images with a computer game , 2004, AAAI Spring Symposium: Knowledge Collection from Volunteer Contributors.