A Focused Asymmetric Metal–Insulator–Metal Tunneling Diode: Fabrication, DC Characteristics and RF Rectification Analysis

Asymmetric thin-film metal-insulator-metal (MIM) tunneling diodes have been demonstrated using the geometric field enhancement (GFE) technique in a Ni/NiO/Ni structure. The GFE technique provides several benefits: generating asymmetric tunneling currents, lowering tunneling resistance, increasing nonlinearity, enhancing the effective ac signal amplitude, and improving zero-bias rectifying performance. The GFE technique can be merged with a dissimilar electrode method and use surface plamon resonances for further performance improvement. In this paper, we disclose techniques for fully exploiting all these advantages. Detailed descriptions of process flows are provided. Performance improvements are experimentally verified by measuring the static current-voltage and dynamic (6.4 GHz) response of the developed Ni/NiO/Ni tunnel diodes.

[1]  Christophe Fumeaux,et al.  Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz , 1998 .

[2]  O. Martin,et al.  Engineering the optical response of plasmonic nanoantennas. , 2008, Optics express.

[3]  Gordon S. Kino,et al.  Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles , 2005 .

[4]  Ingrid Wilke,et al.  Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation , 1994 .

[5]  Mario Dagenais,et al.  New Process Development for Planar-Type CIC Tunneling Diodes , 2010, IEEE Electron Device Letters.

[6]  Steven D. Novack,et al.  SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS , 2008 .

[7]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[8]  P. Hobbs,et al.  Efficient waveguide-integrated tunnel junction detectors at 1.6 mum. , 2007, Optics express.

[9]  Frank R Libsch,et al.  Ni-NiO-Ni tunnel junctions for terahertz and infrared detection. , 2005, Applied optics.

[10]  Ali Javan,et al.  The MOM tunneling diode - Theoretical estimate of its performance at microwave and infrared frequencies , 1978 .

[11]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[12]  Mario Dagenais,et al.  Fabrication of a thin film asymmetric tunneling diode using geometric field enhancement , 2009, 2009 International Semiconductor Device Research Symposium.

[13]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[14]  Annemarie Pucci,et al.  Resonances of individual metal nanowires in the infrared , 2006 .

[15]  M. Peckerar,et al.  Geometry enhanced asymmetric rectifying tunneling diodes , 2010 .

[16]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[17]  A. Javan,et al.  FREQUENCY MIXING IN THE INFRARED AND FAR‐INFRARED USING A METAL‐TO‐METAL POINT CONTACT DIODE , 1968 .

[18]  Daniel E. Prober,et al.  Optical antenna: Towards a unity efficiency near-field optical probe , 1997 .

[19]  Kenneth M. Evenson,et al.  Extension of absolute frequency measurements to 148 THz: Frequencies of the 2.0‐ and 3.5‐μm Xe laser , 1975 .

[20]  D. L. Smythe,et al.  ac electron tunneling at infrared frequencies: Thin‐film M‐O‐M diode structure with broad‐band characteristics , 1974 .

[21]  Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence , 2006 .

[22]  H. H. Klingenberg,et al.  Rectification and harmonic generation with metal‐insulator‐metal diodes in the mid‐infrared , 1983 .

[23]  Subramanian Krishnan,et al.  Design and development of batch fabricatable metal–insulator–metal diode and microstrip slot antenna as rectenna elements , 2008 .

[24]  Wolfgang Porod,et al.  Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes , 2009 .

[25]  W. Porod,et al.  Tunable antenna-coupled metal-oxide-metal (MOM) uncooled IR detector (Invited Paper) , 2005, SPIE Defense + Commercial Sensing.

[26]  Wolfgang Porod,et al.  Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes , 2009 .

[27]  John G. Simmons,et al.  Potential Barriers and Emission‐Limited Current Flow Between Closely Spaced Parallel Metal Electrodes , 1964 .

[28]  J. Whinnery,et al.  Characteristics of integrated MOM junctions at DC and at optical frequencies , 1978, IEEE Journal of Quantum Electronics.

[29]  T. K. Gustafson,et al.  Optical detection in thin‐film metal‐oxide‐metal diodes , 1974 .