How Many Weights Can a Quasi-Cyclic Code Have?

We investigate the largest number of nonzero weights of quasi-cyclic codes. In particular, we focus on the function <inline-formula> <tex-math notation="LaTeX">$\Gamma _{Q}(n,\ell,k,q)$ </tex-math></inline-formula>, that is defined to be the largest number of nonzero weights a quasi-cyclic code of index <inline-formula> <tex-math notation="LaTeX">$\gcd (\ell,n)$ </tex-math></inline-formula>, length <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> and dimension <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">$\mathbb F_{q}$ </tex-math></inline-formula> can have, and connect it to similar functions related to linear and cyclic codes. We provide several upper and lower bounds on this function, using different techniques and studying its asymptotic behavior. Moreover, we determine the smallest index for which a <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-ary Reed-Muller code is quasi-cyclic, a result of independent interest.

[1]  Alessandro Neri,et al.  How Many Weights Can a Cyclic Code Have? , 2018, IEEE Transactions on Information Theory.

[2]  Andrew Granville,et al.  An introduction to additive combinatorics , 2007 .

[3]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[4]  Alessandro Neri,et al.  Maximum Weight Spectrum Codes , 2018, Adv. Math. Commun..

[5]  J. Macwilliams A theorem on the distribution of weights in a systematic code , 1963 .

[6]  H. Mattson,et al.  New 5-designs , 1969 .

[7]  Thierry P. Berger,et al.  The automorphism group of Generalized Reed-Muller codes , 1993, Discret. Math..

[8]  Gérard D. Cohen,et al.  Maximum weight spectrum codes with reduced length , 2018, ArXiv.

[9]  Frank R. Kschischang,et al.  Some ternary and quaternary codes and associated sphere packings , 1992, IEEE Trans. Inf. Theory.

[10]  R. Hill,et al.  Extensions of linear codes , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[11]  Patrick Solé,et al.  On the algebraic structure of quasi-cyclic codes I: Finite fields , 2001, IEEE Trans. Inf. Theory.

[12]  Ray Hill,et al.  An Extension Theorem for Linear Codes , 1999, Des. Codes Cryptogr..

[13]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[14]  Martin Rötteler,et al.  On quantum MDS codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[15]  Tim L. Alderson,et al.  On the Weights of General MDS Codes , 2019, IEEE Transactions on Information Theory.

[16]  E. F. Assmus POLYNOMIAL CODES AND FINITE GEOMETRIES , 2003 .

[17]  Alessio Meneghetti On linear codes and distinct weights , 2018, ArXiv.

[18]  Markus Grassl,et al.  The Weights in MDS Codes , 2009, IEEE Transactions on Information Theory.

[19]  Philippe Delsarte,et al.  Four Fundamental Parameters of a Code and Their Combinatorial Significance , 1973, Inf. Control..

[20]  Gérard D. Cohen,et al.  How many weights can a linear code have? , 2019, Des. Codes Cryptogr..

[21]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[22]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[23]  Graham H. Norton,et al.  Matrix-Product Codes over ?q , 2001, Applicable Algebra in Engineering, Communication and Computing.

[24]  Masaaki Harada,et al.  Type II Codes Over F2 + u F2 , 1999, IEEE Trans. Inf. Theory.

[25]  Tim L. Alderson,et al.  A note on full weight spectrum codes , 2018, ArXiv.

[26]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[27]  A. Haily,et al.  On the Automorphism Group of Distinct Weight Codes , 2015 .