Tectonic structure of the “Main Fault” in the Opalinus Clay, Mont Terri rock laboratory (Switzerland)

[1]  V. Dietze,et al.  Litho- and biostratigraphy of the Opalinus Clay and bounding formations in the Mont Terri rock laboratory (Switzerland) , 2017, Swiss Journal of Geosciences.

[2]  F. Amann,et al.  High-resolution mini-seismic methods applied in the Mont Terri rock laboratory (Switzerland) , 2017, Swiss Journal of Geosciences.

[3]  Peter Connolly,et al.  Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments , 2017, Swiss Journal of Geosciences.

[4]  C. Nussbaum,et al.  Geochemical signature of paleofluids in microstructures from Main Fault in the Opalinus Clay of the Mont Terri rock laboratory, Switzerland , 2017, Swiss Journal of Geosciences.

[5]  C. Nussbaum,et al.  Microstructures and deformation mechanisms in Opalinus Clay: insights from scaly clay from the Main Fault in the Mont Terri Rock Laboratory (CH) , 2016 .

[6]  M. Voutilainen,et al.  The Internal Architecture and Permeability Structures of Faults in Shale Formations , 2016 .

[7]  A. Berger,et al.  Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex , 2015, Nature Communications.

[8]  M. Sintubin,et al.  Evolution of microstructure and porosity in faulted Opalinus Clay , 2015 .

[9]  C. Vollmer,et al.  Microstructural evolution of an incipient fault zone in Opalinus Clay: Insights from an optical and electron microscopic study of ion-beam polished samples from the Main Fault in the Mt-Terri Underground Research Laboratory , 2014 .

[10]  François Renard,et al.  Postseismic pressure solution creep: Evidence and time‐dependent change from dynamic indenting experiments , 2014 .

[11]  R. Thöny Geomechanical analysis of excavation-induced rock mass behavior of faulted opalinus clay at the Mont Terri underground rock laboratory (Switzerland) , 2014 .

[12]  F. Chester,et al.  Structure and Composition of the Plate-Boundary Slip Zone for the 2011 Tohoku-Oki Earthquake , 2013, Science.

[13]  Zeshan Ismat Block-supported cataclastic flow within the upper crust , 2013 .

[14]  C. Marone,et al.  Shear zones in clay-rich fault gouge: A laboratory study of fabric development and evolution , 2013 .

[15]  J. Urai,et al.  Pore morphology and distribution in the Shaly facies of Opalinus Clay (Mont Terri, Switzerland): Insights from representative 2D BIB–SEM investigations on mm to nm scale , 2013 .

[16]  Christophe Nussbaum,et al.  Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland) , 2011 .

[17]  P. K. Kaiser,et al.  Influence of tectonic shears on tunnel-induced fracturing , 2010 .

[18]  S. Siegesmund,et al.  Influence of carbonate microfabrics on the failure strength of claystones , 2009 .

[19]  H. Fossen,et al.  Internal geometry of fault damage zones in interbedded siliciclastic sediments , 2008 .

[20]  Paul Marschall,et al.  Characterisation of Gas Transport Properties of the Opalinus Clay, a Potential Host Rock Formation for Radioactive Waste Disposal , 2005 .

[21]  B. Clennell,et al.  On the nature of scaly fabric and scaly clay , 2003 .

[22]  Agust Gudmundsson Fluid overpressure and flow in fault zones: field measurements and models , 2001 .

[23]  T. Blenkinsop Deformation Microstructures and Mechanisms in Minerals and Rocks , 2000 .

[24]  C. Passchier,et al.  Shear sense indicators in striped bedding-veins , 2000 .

[25]  M. Doblas,et al.  Slickenside and fault surface kinematic indicators on active normal faults of the Alpine Betic Cordilleras, Granada, southern Spain , 1997 .

[26]  Y. Ogawa,et al.  Scaly fabrics in sheared clays from the décollement zone of the Barbados accretionary prism , 1997 .

[27]  P. Labaume,et al.  Strain decoupling across the decollement of the Barbados accretionary prism , 1996 .