SFERES : Un framework pour la conception de systèmes multi-agents adaptatifs

Nous presentons les principaux aspects de SFERES, un framework d'evolution artificielle et de simulation multi-agent permettant de faciliter l'integration de l'apprentissage par algorithme evolutionniste dans la conception de systemes multi-agent adaptatifs. Dans une premiere partie de l'article, nous presentons brievement les concepts et les techniques des differents algorithmes evolutionnistes existants. La seconde partie est consacree a la presentation du framework, de ses principales composantes, de sa structure, des choix de conception et de ses possibilites d'extensions. Nous concluons en mentionnant les applications qui beneficient deja de l'environnement et des facilites de SFERES et en evoquant ses perspectives de developpement.

[1]  A. Bennett The Origin of Species by means of Natural Selection; or the Preservation of Favoured Races in the Struggle for Life , 1872, Nature.

[2]  Huebner,et al.  Proceedings of the First Annual Conference of the Wharton School of Finance and Commerce , 2022 .

[3]  Denyse Baillargeon,et al.  Bibliographie , 1929 .

[4]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[5]  A. Gray,et al.  I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .

[6]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[7]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[8]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[9]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[10]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[11]  John Holland,et al.  Adaptation in Natural and Artificial Sys-tems: An Introductory Analysis with Applications to Biology , 1975 .

[12]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[13]  Lawrence Davis,et al.  Job Shop Scheduling with Genetic Algorithms , 1985, ICGA.

[14]  John J. Grefenstette,et al.  Genetic Algorithms for the Traveling Salesman Problem , 1985, ICGA.

[15]  J. Grefenstette The Evolution of Strategies for Multi-agent Environments , 1987 .

[16]  Gunar E. Liepins,et al.  A Classifier Based System for Discovering Scheduling Heuristics , 1987, ICGA.

[17]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[18]  Kenneth A. De Jong,et al.  Using Genetic Algorithms to Solve NP-Complete Problems , 1989, ICGA.

[19]  Marco Dorigo,et al.  Genetic Algorithms and Highly Constrained Problems: The Time-Table Case , 1990, PPSN.

[20]  Stewart W. Wilson The animat path to AI , 1991 .

[21]  David B. Fogel,et al.  Evolving artificial intelligence , 1992 .

[22]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[23]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[24]  David Beasley,et al.  An overview of genetic algorithms: Part 1 , 1993 .

[25]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[26]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[27]  Hsiao-Lan Fang,et al.  Genetic algorithms in timetabling and scheduling , 1995 .

[28]  Larry Bull,et al.  Evolving multi-agent systems , 1995 .

[29]  Gerhard Weiß,et al.  Adaptation and Learning in Multi-Agent Systems: Some Remarks and a Bibliography , 1995, Adaption and Learning in Multi-Agent Systems.

[30]  Sandip Sen,et al.  Adaption and Learning in Multi-Agent Systems , 1995, Lecture Notes in Computer Science.

[31]  David Andre,et al.  The Evolution of Agents that Build Mental Models and Create Simple Plans Using Genetic Programming , 1995, ICGA.

[32]  Sandip Sen,et al.  Multiagent Coordination with Learning Classifier Systems , 1995, Adaption and Learning in Multi-Agent Systems.

[33]  Sandip Sen,et al.  Evolving a Team , 1995 .

[34]  Akira Ito,et al.  The Emergence of Cooperation in a Society of Autonomous Agents - The Prisoner's Dilemma Game under the Disclosure of Contract Histories , 1995, ICMAS.

[35]  Jean-Yves Potvin,et al.  Genetic Algorithms for the Traveling Salesman Problem , 2005 .

[36]  Pattie Maes,et al.  Emergence of a Multi-Agent Architecture and New Tactics For the Ant Colony Food Foraging Problem Using Genetic Programming , 1996 .

[37]  Jacques Periaux,et al.  Genetic Algorithms in Engineering and Computer Science , 1996 .

[38]  Thomas Bäck,et al.  Evolutionary computation: an overview , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[39]  Lee Spector,et al.  Evolving teamwork and coordination with genetic programming , 1996 .

[40]  Marek Kisiel-Dorohinicki,et al.  The Application of Evolution Process in Multi-Agent World to the Prediction System , 1996 .

[41]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[42]  Stanley J. Rosenschein,et al.  From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior , 1996 .

[43]  Jacques Ferber,et al.  MadKit: Organizing heterogeneity with groups in a platform for multiple multi-agent systems , 1997 .

[44]  Hiroaki Kitano,et al.  RoboCup: The Robot World Cup Initiative , 1997, AGENTS '97.

[45]  Alexandros Moukas Amalthaea Information Discovery and Filtering Using a Multiagent Evolving Ecosystem , 1997, Appl. Artif. Intell..

[46]  Frank Hoffmann,et al.  Evolutionary design of a fuzzy knowledge base for a mobile robot , 1997, Int. J. Approx. Reason..

[47]  Alexis Drogoul,et al.  Methodological Issues for Designing Multi-Agent Systems with Machine Learning Techniques: Capitalizing Experiences from the RoboCup Challenge , 1998 .

[48]  Sandip Sen,et al.  Evolution and learning in multiagent systems , 1998, Int. J. Hum. Comput. Stud..

[49]  Stefano Nolfi,et al.  Competitive co-evolutionary robotics: from theory to practice , 1998 .

[50]  John Eccleston,et al.  Statistics and Computing , 2006 .

[51]  Charles E. Taylor,et al.  Evolutionary Computation: An Overview , 1999 .

[52]  Alexis Drogoul,et al.  MICRobES : vers des collectivités de robots socialement situés , 1999, JFIADSMA.

[53]  Stefano Nolfi,et al.  Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines , 2000 .

[54]  J. Kupiec,et al.  Ni Dieu Ni Gène Pour Une Autre Théorie de L'Hérédité , 2000 .

[55]  Hiroaki Kitano,et al.  RoboCup-98: Robot Soccer World Cup II , 2001, Lecture Notes in Computer Science.

[56]  P. Husbands Evolving artificial intelligence , 2001, Trends in Cognitive Sciences.

[57]  Alexis Drogoul,et al.  ATNoSFERES : a Model for Evolutive Agent Behaviors , 2001 .

[58]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[59]  Sébastien Picault,et al.  Ethogenetics and the Evolutionary Design of Agents Behaviors , 2001 .

[60]  Olivier Sigaud,et al.  YACS: a new learning classifier system using anticipation , 2002, Soft Comput..

[61]  K. Roberts,et al.  Thesis , 2002 .