Vacancy defect control of colossal thermopower in FeSb2

[1]  Sang-Jun Choi,et al.  Crystal size effects on giant thermopower in CrSb2 , 2020 .

[2]  H. Fukuyama,et al.  Effect of Phonon Drag on Seebeck Coefficient Based on Linear Response Theory: Application to FeSb2 , 2019, Journal of the Physical Society of Japan.

[3]  Dong‐Won Kim,et al.  Strain-mediated point defects in thermoelectric p-type bismuth telluride polycrystalline , 2019, Nano Energy.

[4]  G. Kotliar,et al.  Unusual electronic and vibrational properties in the colossal thermopower material FeSb2 , 2018, Scientific Reports.

[5]  V. Ralchenko,et al.  Thermal conductivity of high purity synthetic single crystal diamonds , 2018 .

[6]  G. Kotliar,et al.  Study for material analogs of FeSb2 : Material design for thermoelectric materials , 2018, 1803.06256.

[7]  A. Zunger,et al.  Instilling defect tolerance in new compounds. , 2017, Nature materials.

[8]  R. Okazaki,et al.  Colossal Seebeck effect enhanced by quasi-ballistic phonons dragging massive electrons in FeSb2 , 2016, Nature Communications.

[9]  Joseph P. Heremans,et al.  Introduction to cryogenic solid state cooling , 2016, SPIE Defense + Security.

[10]  A. Maignan,et al.  Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  K. Held,et al.  Unified Picture for the Colossal Thermopower Compound FeSb2. , 2015, Physical review letters.

[12]  G. Kotliar,et al.  Highly dispersive electron relaxation and colossal thermoelectricity in the correlated semiconductor FeSb2 , 2013, 1309.3048.

[13]  Vinayak P. Dravid,et al.  High performance bulk thermoelectrics via a panoscopic approach , 2013 .

[14]  David J. Singh,et al.  Transport, Thermal, and Magnetic Properties of the Narrow-Gap Semiconductor CrSb2 , 2012, 1209.3676.

[15]  Q. Li,et al.  Electronic thermoelectric power factor and metal-insulator transition in FeSb 2 , 2012, 1210.3355.

[16]  Kefeng Wang,et al.  Enhancement of the thermoelectric properties in doped FeSb2 bulk crystals , 2012, 1605.01720.

[17]  P. Canfield,et al.  Growing intermetallic single crystals using in situ decanting , 2012 .

[18]  G. Kotliar,et al.  Signatures of electronic correlations in iron silicide , 2011, Proceedings of the National Academy of Sciences.

[19]  R. Okazaki,et al.  Low-temperature magnetotransport of the narrow-gap semiconductor FeSb 2 , 2011, 1110.6854.

[20]  J. S. Hicks,et al.  Four-circle single-crystal neutron diffractometer at the High Flux Isotope Reactor , 2011 .

[21]  I. Terasaki,et al.  Effects of ppm-Level Imperfection on the Transport Properties of FeSb2 Single Crystals , 2011 .

[22]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[23]  Susanne Stemmer,et al.  Standardless atom counting in scanning transmission electron microscopy. , 2010, Nano letters.

[24]  A. Georges,et al.  Thermopower of correlated semiconductors: Application to FeAs 2 and FeSb 2 , 2010, 1006.0564.

[25]  B. Iversen,et al.  Narrow band gap and enhanced thermoelectricity in FeSb2. , 2010, Dalton transactions.

[26]  B. Iversen,et al.  Huge Thermoelectric Power Factor: FeSb2 versus FeAs2 and RuSb2 , 2009, 0910.0784.

[27]  P. Kent,et al.  Microstructure and a nucleation mechanism for nanoprecipitates in PbTe-AgSbTe2. , 2009, Physical review letters.

[28]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[29]  J Yang,et al.  Atomistic structure and nucleation of nanoprecipitates in thermoelectric PbTe-AgSbTe2 composite , 2008 .

[30]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[31]  K. J. Thomas,et al.  Colossal Positive Magnetoresistance in a Doped Nearly Magnetic Semiconductor , 2008, 0801.1354.

[32]  G. Madsen,et al.  Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2 , 2007 .

[33]  V. Mitrović,et al.  Optical investigation of the metal-insulator transition in FeSb2 , 2005, cond-mat/0510131.

[34]  Y. Lee,et al.  Kondo insulator description of spin state transition in FeSb2 , 2005, cond-mat/0504458.

[35]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[36]  Wei Chen,et al.  Cubic : Bulk Thermoelectric Materials with High Figure of Merit , 2004 .

[37]  Jong-Woo Kim,et al.  Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeSb2 , 2002, cond-mat/0206190.

[38]  S. Maekawa,et al.  Effects of spin and orbital degeneracy on the thermopower of strongly correlated systems. , 2001, Physical review letters.

[39]  G. Kotliar,et al.  Thermoelectric Response Near the Density Driven Mott Transition , 1998, cond-mat/9911136.

[40]  T. R. Anthony,et al.  Some aspects of the thermal conductivity of isotopically enriched diamond single crystals. , 1992, Physical review letters.

[41]  Humphrey J. Maris,et al.  Anisotropic Heat Conduction in Cubic Crystals in the Boundary Scattering Regime , 1970 .

[42]  G. W. Hull,et al.  CuSe2, a Marcasite Type Superconductor , 1968, Nature.

[43]  N. H. March Vacancy formation energy and debye temperature in close packed metals , 1966 .

[44]  K. Mukherjee Monovacancy formation energy and debye temperature of close-packed metals , 1965 .

[45]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .