Full optimization of quasiharmonic free energy with an anharmonic lattice model: Application to thermal expansion and pyroelectricity of wurtzite GaN and ZnO

We present a theory and a calculation scheme of structural optimization at finite temperatures within the quasiharmonic approximation (QHA). The theory is based on an efficient scheme of updating the interatomic force constants with the change of crystal structures, which we call the IFC renormalization. The cell shape and the atomic coordinates are treated equally and simultaneously optimized. We apply the theory to the thermal expansion and the pyroelectricity of wurtzite GaN and ZnO, which accurately reproduces the experimentally observed behaviors. Furthermore, we point out a general scheme to obtain correct $T$ dependence at the lowest order in constrained optimizations that reduce the number of effective degrees of freedom, which is helpful to perform efficient QHA calculations with little sacrificing accuracy. We show that the scheme works properly for GaN and ZnO by comparing with the optimization of all the degrees of freedom.

[1]  R. Arita,et al.  Ab initio structural optimization at finite temperatures based on anharmonic phonon theory: Application to the structural phase transitions of BaTiO3 , 2022, Physical Review B.

[2]  A. Dal Corso,et al.  Finite-temperature atomic relaxations: Effect on the temperature-dependent C44 elastic constants of Si and BAs. , 2022, Journal of Chemical Physics.

[3]  A. Bongiorno,et al.  Enhancing efficiency and scope of first-principles quasiharmonic approximation methods through the calculation of third-order elastic constants , 2022, Physical Review Materials.

[4]  C. Marianetti,et al.  Generalized quasiharmonic approximation via space group irreducible derivatives , 2022, Physical Review B.

[5]  R. Arita,et al.  Anharmonic Grüneisen theory based on self-consistent phonon theory: Impact of phonon-phonon interactions neglected in the quasiharmonic theory , 2021, Physical Review B.

[6]  Zachary D. Hood,et al.  Computational study of Li3BO3 and Li3BN2 II: Stability analysis of pure phases and of model interfaces with Li anodes , 2021, Physical Review Materials.

[7]  Qiang Sun,et al.  Negative thermal expansion: Mechanisms and materials , 2021 .

[8]  Yong Liu,et al.  Elastic3rd: A tool for calculating third-order elastic constants from first-principles calculations , 2021, Comput. Phys. Commun..

[9]  M. Surmeneva,et al.  A review on piezo- and pyroelectric responses of flexible nano- and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications , 2021 .

[10]  Hongwei Huang,et al.  Pyroelectric catalysis , 2020, Nano Energy.

[11]  N. Benedek,et al.  Thermal expansion in insulating solids from first principles , 2019, Journal of Applied Physics.

[12]  B. Hanrahan,et al.  Origin of Pyroelectricity in Ferroelectric HfO 2 , 2019, Physical Review Applied.

[13]  P. B. Allen Theory of thermal expansion: Quasi-harmonic approximation and corrections from quasi-particle renormalization , 2019, Modern Physics Letters B.

[14]  S. Pantelides,et al.  Pyroelectric response and temperature-induced α - β phase transitions in α -In 2 Se 3 and other , 2019, 2D Materials.

[15]  Terumasa Tadano,et al.  First-principles study of phonon anharmonicity and negative thermal expansion in ScF3 , 2018, Physical Review Materials.

[16]  V. Ozoliņš,et al.  Compressive sensing lattice dynamics. I. General formalism , 2018, Physical Review B.

[17]  S. Pantelides,et al.  Pyroelectric response and temperature-induced α-β phase transitions in α-In2Se3 and other α-III2VI3 (III  =  Al, Ga, In; VI  =  S, Se) monolayers , 2019 .

[18]  N. Benedek,et al.  Interplay between Phonons and Anisotropic Elasticity Drives Negative Thermal Expansion in PbTiO_{3}. , 2018, Physical review letters.

[19]  P. B. Allen,et al.  Internal and external thermal expansions of wurtzite ZnO from first principles , 2018, Computational Materials Science.

[20]  K. Takenaka Progress of Research in Negative Thermal Expansion Materials: Paradigm Shift in the Control of Thermal Expansion , 2018, Front. Chem..

[21]  S. Pantelides,et al.  Mechanisms of Pyroelectricity in Three- and Two-Dimensional Materials. , 2018, Physical review letters.

[22]  M. Shirts,et al.  Thermal Gradient Approach for the Quasi-harmonic Approximation and Its Application to Improved Treatment of Anisotropic Expansion. , 2017, Journal of chemical theory and computation.

[23]  J. Niedziela,et al.  Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon , 2016, Proceedings of the National Academy of Sciences.

[24]  T. Mikolajick,et al.  The pyroelectric coefficient of free standing GaN grown by HVPE , 2016 .

[25]  Liang-Feng Huang,et al.  An efficient ab-initio quasiharmonic approach for the thermodynamics of solids , 2016, 1603.08122.

[26]  Marco Buongiorno Nardelli,et al.  High-Throughput Prediction of Finite-Temperature Properties using the Quasi-Harmonic Approximation , 2016, 1603.06924.

[27]  P. B. Allen,et al.  First-principles study of pyroelectricity in GaN and ZnO , 2016, 1603.00657.

[28]  S. C. Parker,et al.  Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductors. , 2015, The Journal of chemical physics.

[29]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[30]  S. Tsuneyuki,et al.  Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO 3 with first-principles anharmonic force constants , 2015, 1506.01781.

[31]  P. B. Allen Anharmonic phonon quasiparticle theory of zero-point and thermal shifts in insulators: Heat capacity, bulk modulus, and thermal expansion , 2015, 1502.06646.

[32]  Christopher R. Bowen,et al.  Pyroelectric materials and devices for energy harvesting applications , 2014 .

[33]  A. Erba On combining temperature and pressure effects on structural properties of crystals with standard ab initio techniques. , 2014, The Journal of chemical physics.

[34]  Y. Gohda,et al.  Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  Isao Tanaka,et al.  First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2 , 2010 .

[36]  P. Giannozzi,et al.  Density-Functional Perturbation Theory for Quasi-Harmonic Calculations , 2010 .

[37]  Isao Tanaka,et al.  First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2 , 2010 .

[38]  C. Smith,et al.  Negative thermal expansion: a review , 2009 .

[39]  Chao-sheng Deng,et al.  Thermodynamics of wurtzite GaN from first-principle calculation , 2008 .

[40]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[41]  Jun Tsuchiya,et al.  First-principles prediction of crystal structures at high temperatures using the quasiharmonic approximation , 2007 .

[42]  K. Matocha,et al.  Comparison of metal-oxide-semiconductor capacitors on c- and m-plane gallium nitride , 2007 .

[43]  Jijun Zhao,et al.  First-principles calculations of second-and third-order elastic constants for single crystals of arbitrary symmetry , 2007 .

[44]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[45]  Sven Einfeldt,et al.  Temperature dependence of the thermal expansion of GaN , 2005 .

[46]  Nicola Marzari,et al.  First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives , 2004, cond-mat/0412643.

[47]  R. Gutmann,et al.  Positive flatband voltage shift in MOS capacitors on n-type GaN , 2002, IEEE Electron Device Letters.

[48]  R. Reeber,et al.  Lattice parameters and thermal expansion of GaN , 2000 .

[49]  Stefano de Gironcoli,et al.  High-pressure lattice dynamics and thermoelasticity of MgO , 2000 .

[50]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[51]  M. Shur,et al.  Pyroelectricity in gallium nitride thin films , 1996 .

[52]  N. Allan,et al.  The zero static internal stress approximation in lattice dynamics and the calculation of isotope effects on molar volumes , 1996 .

[53]  M. Boćkowski,et al.  Thermal Expansion of GaN Bulk Crystals and Homoepitaxial Layers , 1996 .

[54]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[55]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[56]  T. Moustakas,et al.  Thermal expansion of gallium nitride , 1994 .

[57]  Joshua R. Smith,et al.  Universal features of the equation of state of solids , 1989 .

[58]  Baroni,et al.  Ab initio calculation of the macroscopic dielectric constant in silicon. , 1986, Physical review. B, Condensed matter.

[59]  B. Szigeti Temperature Dependence of Pyroelectricity , 1975 .

[60]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[61]  B. Yates,et al.  Low-Temperature Thermal Expansion of Zinc Oxide. Vibrations in Zinc Oxide and Sphalerite Zinc Sulfide , 1971 .

[62]  R. Reeber Lattice parameters of ZnO from 4.2° to 296°K , 1970 .

[63]  J. J. Tietjen,et al.  THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN , 1969 .

[64]  H. Ibach Thermal Expansion of Silicon and Zinc Oxide (II) , 1969 .

[65]  A. A. Khan,et al.  X-ray determination of thermal expansion of zinc oxide , 1968 .

[66]  H. Ibach,et al.  Pyroelectricity of zinc oxide , 1966 .

[67]  K. Brugger Pure Modes for Elastic Waves in Crystals , 1965 .

[68]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[69]  Max Born,et al.  On the Quantum Theory of Pyroelectricity , 1945 .

[70]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[71]  E. Grüneisen,et al.  Theorie des festen Zustandes einatomiger Elemente , 1912 .