Semiparametric Slepian-Bangs Formula for Complex Elliptically Symmetric Distributions.
暂无分享,去创建一个
Abdelhak M. Zoubir | Fulvio Gini | Maria Greco | Stefano Fortunati | A. Zoubir | F. Gini | M. Greco | S. Fortunati
[1] G. Simons,et al. On the theory of elliptically contoured distributions , 1981 .
[2] P. Krishnaiah,et al. Complex elliptically symmetric distributions , 1986 .
[3] Kaare Brandt Petersen,et al. The Matrix Cookbook , 2006 .
[4] Frédéric Pascal,et al. New Insights Into the Statistical Properties of $M$-Estimators , 2017, IEEE Transactions on Signal Processing.
[5] V. Koivunen,et al. On the Cramér-Rao bound for the constrained and unconstrained complex parameters , 2008, 2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop.
[6] Visa Koivunen,et al. Essential Statistics and Tools for Complex Random Variables , 2010, IEEE Transactions on Signal Processing.
[7] Sofia C. Olhede,et al. On probability density functions for complex variables , 2006, IEEE Transactions on Information Theory.
[8] K. Do,et al. Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .
[9] Bernard C. Picinbono,et al. On circularity , 1994, IEEE Trans. Signal Process..
[10] Visa Koivunen,et al. Influence Function and Asymptotic Efficiency of Scatter Matrix Based Array Processors: Case MVDR Beamformer , 2009, IEEE Transactions on Signal Processing.
[11] Olivier Besson,et al. On the Fisher Information Matrix for Multivariate Elliptically Contoured Distributions , 2013, IEEE Signal Processing Letters.
[12] Davy Paindaveine,et al. A canonical definition of shape , 2008 .
[13] Christ D. Richmond,et al. Adaptive array signal processing and performance analysis in non-Gaussian environments , 1996 .
[14] D. Paindaveine,et al. SEMIPARAMETRICALLY EFFICIENT RANK-BASED INFERENCE FOR SHAPE I. OPTIMAL RANK-BASED TESTS FOR SPHERICITY , 2006, 0707.4621.
[15] Abdelhak M. Zoubir,et al. Semiparametric Inference and Lower Bounds for Real Elliptically Symmetric Distributions , 2018, IEEE Transactions on Signal Processing.
[16] Bernard C. Picinbono,et al. Second-order complex random vectors and normal distributions , 1996, IEEE Trans. Signal Process..
[17] Priscilla E. Greenwood,et al. An Introduction to Efficient Estimation for Semiparametric Time Series , 2004 .
[18] Stefano Fortunati,et al. Misspecified Cramér-rao bounds for complex unconstrained and constrained parameters , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).
[19] Bhaskar D. Rao,et al. Cramer-Rao lower bound for constrained complex parameters , 2004, IEEE Signal Processing Letters.
[20] A. Tsiatis. Semiparametric Theory and Missing Data , 2006 .
[21] H. Vincent Poor,et al. Complex Elliptically Symmetric Distributions: Survey, New Results and Applications , 2012, IEEE Transactions on Signal Processing.
[22] David S. Slepian,et al. Estimation of signal parameters in the presence of noise , 1954, Trans. IRE Prof. Group Inf. Theory.
[23] S. Kotz,et al. Symmetric Multivariate and Related Distributions , 1989 .
[24] Petre Stoica,et al. MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.
[25] C. Richmond. A note on non-Gaussian adaptive array detection and signal parameter estimation , 1996, IEEE Signal Processing Letters.
[26] Hualiang Li,et al. Complex-Valued Adaptive Signal Processing Using Nonlinear Functions , 2008, EURASIP J. Adv. Signal Process..
[27] Eric Chaumette,et al. New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters , 2012, IEEE Transactions on Signal Processing.
[28] Michael Muma,et al. Robust Statistics for Signal Processing , 2018 .
[29] Steven Kay,et al. Fundamentals Of Statistical Signal Processing , 2001 .
[30] Adriaan van den Bos,et al. A Cramer-Rao lower bound for complex parameters , 1994, IEEE Trans. Signal Process..
[31] D. Paindaveine,et al. SEMIPARAMETRICALLY EFFICIENT RANK-BASED INFERENCE FOR SHAPE II. OPTIMAL R-ESTIMATION OF SHAPE , 2006, 0708.0079.
[32] Anthony J. Weiss,et al. On the Cramer-Rao Bound for Direction Finding of Correlated Signals , 1993, IEEE Trans. Signal Process..
[33] Fulvio Gini,et al. Cramér-Rao Lower Bounds on Covariance Matrix Estimation for Complex Elliptically Symmetric Distributions , 2013, IEEE Transactions on Signal Processing.
[34] P. Stoica,et al. The stochastic CRB for array processing: a textbook derivation , 2001, IEEE Signal Processing Letters.
[35] Fulvio Gini,et al. Performance Bounds for Parameter Estimation under Misspecified Models: Fundamental Findings and Applications , 2017, IEEE Signal Processing Magazine.
[36] Christ D. Richmond,et al. Parameter Bounds on Estimation Accuracy Under Model Misspecification , 2015, IEEE Transactions on Signal Processing.
[37] Abdelhak M. Zoubir,et al. A Fresh Look at the Semiparametric Cramér-Rao Bound , 2018, 2018 26th European Signal Processing Conference (EUSIPCO).
[38] L. Scharf,et al. Statistical Signal Processing of Complex-Valued Data: The Theory of Improper and Noncircular Signals , 2010 .
[39] P. Bickel. On Adaptive Estimation , 1982 .
[40] Petre Stoica,et al. Performance study of conditional and unconditional direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..
[41] Bas J. M. Werker,et al. Semiparametric efficiency, distribution-freeness and invariance. , 2003 .
[42] B. A. D. H. Brandwood. A complex gradient operator and its applica-tion in adaptive array theory , 1983 .
[43] Jan R. Magnus,et al. The Elimination Matrix: Some Lemmas and Applications , 1980, SIAM J. Algebraic Discret. Methods.
[44] Abdelhak M. Zoubir,et al. Slepian-Bangs-type formulas and the related Misspecified Cramér-Rao Bounds for Complex Elliptically Symmetric distributions , 2018, Signal Process..
[45] J. Magnus,et al. The Commutation Matrix: Some Properties and Applications , 1979 .
[46] Steeve Zozor,et al. Some Results on the Denoising Problem in the Elliptically Distributed Context , 2010, IEEE Transactions on Signal Processing.
[47] Are Hjrungnes,et al. Complex-Valued Matrix Derivatives: With Applications in Signal Processing and Communications , 2011 .
[48] Erik G. Larsson,et al. Stochastic Cramer-Rao bound for direction estimation in unknown noise fields , 2002 .
[49] W. J. Hall,et al. Information and Asymptotic Efficiency in Parametric-Nonparametric Models , 1983 .
[50] Ken Kreutz-Delgado,et al. The Complex Gradient Operator and the CR-Calculus ECE275A - Lecture Supplement - Fall 2005 , 2009, 0906.4835.
[51] Björn E. Ottersten,et al. Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data , 1992, IEEE Trans. Signal Process..
[52] A. Bos. Complex gradient and Hessian , 1994 .
[53] W. Newey,et al. Semiparametric Efficiency Bounds , 1990 .
[54] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[55] Marc Hallin,et al. Parametric and semiparametric inference for shape: the role of the scale functional , 2006 .
[56] Abdelhak M. Zoubir,et al. The Semiparametric Cramér-Rao Bound for Complex Elliptically Symmetric Distributions , 2018, 1807.08505.
[57] Tülay Adali,et al. Complex-Valued Signal Processing: The Proper Way to Deal With Impropriety , 2011, IEEE Transactions on Signal Processing.