Properties of Infinite Words: Recent Result

In this survey, two problems are considered. The first is to determine conditions on an infinite word such that the set of (finite) words which are not prefixes is context-free. The second is to describe how the number of factors of length n in an infinite word grows as a function of n. An application to a problem concerning semigroups motivates the second problem.

[1]  Maurice Nivat,et al.  Quelques problèmes ouverts en théorie des langages algébriques , 1979, RAIRO Theor. Informatics Appl..

[2]  Arto Salomaa,et al.  On Infinite Words Obtained by Iterating Morphisms , 1982, Theor. Comput. Sci..

[3]  Juhani Karhumäki,et al.  On cube-free ω-words generated by binary morphisms , 1983, Discret. Appl. Math..

[4]  Antonio Restivo Permutation properties and the fibonacci semigroup , 1989 .

[5]  G. Rauzy,et al.  Sequences defined by iterated morphisms , 1990 .

[6]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[7]  Tero Harju,et al.  On the Periodicity of Morphisms on Free Monoids , 1986, RAIRO Theor. Informatics Appl..

[8]  Philippe Flajolet,et al.  Prefixes of Infinite Words and Ambiguous Context-Free Languages , 1987, Inf. Process. Lett..

[9]  Aldo de Luca,et al.  Some Combinatorial Properties of the Thue-Morse Sequence and a Problem in Semigroups , 1989, Theor. Comput. Sci..

[10]  Alain Terlutte,et al.  Sur Les Centres De Dol-Languages , 1987, RAIRO Theor. Informatics Appl..

[11]  D. Robinson,et al.  A permutational property of groups , 1985 .

[12]  G. A. Hedlund,et al.  Unending chess, symbolic dynamics and a problem in semigroups , 1944 .

[13]  David Haussler,et al.  Applications of an Infinite Squarefree CO-CFL , 1985, ICALP.

[14]  Michael G. Main,et al.  An Infinite Square-Free co-CFL , 1985, Inf. Process. Lett..

[15]  Jean Berstel Every Iterated Morphism Yields a co-CFL , 1986, Inf. Process. Lett..

[16]  Alain Terlutte Contribution à l'étude des langages engendrés par des morphismes itérés , 1988 .

[17]  Filippo Mignosi,et al.  Infinite Words with Linear Subword Complexity , 1989, Theor. Comput. Sci..

[18]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[19]  Mario Curzio,et al.  Su di un problema combinatorio in teoria dei gruppi , 1983 .

[20]  Arnaldo Moura,et al.  A Generalization of Ogden's Lemma , 1982, JACM.

[21]  R. Blyth Rewriting products of group elements—II , 1988 .

[22]  Philippe Flajolet,et al.  Analytic Models and Ambiguity of Context-free Languages* , 2022 .

[23]  Aldo de Luca,et al.  Factorial Languages Whose Growth Function is Quadratically Upper Bounded , 1989, Inf. Process. Lett..

[24]  Jacques Justin,et al.  Infinite words and permutation properties , 1990 .

[25]  Jeffrey Shallit A Generalization of Automatic Sequences , 1988, Theor. Comput. Sci..

[26]  Jean-Jacques Pansiot,et al.  Decidability of Periodicity for Infinite Words , 1986, RAIRO Theor. Informatics Appl..

[27]  Joseph S. Ullian,et al.  Ambiguity in context free languages , 1966, JACM.

[28]  Andrzej Ehrenfeucht,et al.  On the Subword Complexity of D0L Languages with a Constant Distribution , 1981, Inf. Process. Lett..

[29]  C. Reutenauer,et al.  On the burnside problem for semigroups , 1984 .

[30]  Srecko Brlek,et al.  Enumeration of factors in the Thue-Morse word , 1989, Discret. Appl. Math..

[31]  Karl Winklmann,et al.  An "Interchange Lemma" for Context-Free Languages , 1985, SIAM J. Comput..

[32]  Anne Grazon An Infinite Word Language Which is Not co-CFL , 1987, Inf. Process. Lett..

[33]  Philippe Flajolet,et al.  Ambiguity and Transcendence , 1985, ICALP.