The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends

Zirconia ceramics have found broad applications in a variety of energy and biomedical applications because of their unusual combination of strength, fracture toughness, ionic conductivity, and low thermal conductivity. These attractive characteristics are largely associated with the stabilization of the tetragonal and cubic phases through alloying with aliovalent ions. The large concentration of vacancies introduced to charge compensate of the aliovalent alloying is responsible for both the exceptionally high ionic conductivity and the unusually low, and temperature independent, thermal conductivity. The high fracture toughness exhibited by many of zirconia ceramics is attributed to the constraint of the tetragonal-to-monoclinic phase transformation and its release during crack propagation. In other zirconia ceramics containing the tetragonal phase, the high fracture toughness is associated with ferroelastic domain switching. However, many of these attractive features of zirconia, especially fracture toughness and strength, are compromised after prolonged exposure to water vapor at intermediate temperatures (∼30°–300°C) in a process referred to as low-temperature degradation (LTD), and initially identified over two decades ago. This is particularly so for zirconia in biomedical applications, such as hip implants and dental restorations. Less well substantiated is the possibility that the same process can also occur in zirconia used in other applications, for instance, zirconia thermal barrier coatings after long exposure at high temperature. Based on experience with the failure of zirconia femoral heads, as well as studies of LTD, it is shown that many of the problems of LTD can be mitigated by the appropriate choice of alloying and/or process control.

[1]  J. Hertz,et al.  Enhanced ionic conductivity and phase meta-stability of nano-sized thin film yttria-doped zirconia (YDZ) , 2009 .

[2]  A. Evans,et al.  Mechanically Induced Zone Darkening of Alumina/Ceria-Stabrlized Zirconia Composites , 1994 .

[3]  Hong-lim Lee,et al.  Fracture Toughness, Ionic Conductivity, and Low‐Temperature Phase Stability of Tetragonal Zirconia Codoped with Yttria and Niobium Oxide , 2005 .

[4]  P. Whalen,et al.  Prevention of Low‐Temperature Surface Transformation by Surface Recrystallization in Yttria‐Doped Tetragonal Zirconia , 1989 .

[5]  Y. Murase,et al.  Role of Water Vapor in Crystallite Growth and Tetragonal‐Monoclinic Phase Transformation of ZrO2 , 1983 .

[6]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[7]  J. Chevalier,et al.  Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. , 2006, Biomaterials.

[8]  F. Mücklich,et al.  Quantification of hydrothermal degradation in zirconia by nanoindentation , 2008 .

[9]  T. Oberbach,et al.  Low‐Temperature Aging Behavior of Alumina‐Toughened Zirconia , 2008 .

[10]  J. Chevalier,et al.  Martensitic transformation in zirconiaPart II. Martensite growth , 2004, 1804.01460.

[11]  Alban Azzopardi,et al.  Thermal diffusivity and conductivity of Zr1−xYxO2−x/2 (x=0, 0.084 and 0.179) single crystals , 2004 .

[12]  Anthony G. Evans,et al.  Mechanics of Transformation‐Toughening in Brittle Materials , 1982 .

[13]  R. Rawlings,et al.  The hydroxylation of t-ZrO2 surfaces , 2001 .

[14]  F. Aldinger,et al.  Assessment of thermodynamic parameters in the system ZrO2–Y2O3–Al2O3 , 2004 .

[15]  F. Aldinger,et al.  On the phase relations in the ZrO2–YO1.5–AlO1.5 system , 2006 .

[16]  Xin Guo,et al.  Property Degradation of Tetragonal Zirconia Induced by Low-Temperature Defect Reaction with Water Molecules , 2004 .

[17]  M. Finnis,et al.  A stabilization mechanism of zirconia based on oxygen vacancies only , 2002, cond-mat/0206080.

[18]  H. Scherrer,et al.  Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia , 2003 .

[19]  C. Levi,et al.  Opportunities for TBCs in the ZrO2–YO1.5–TaO2.5 system , 2007 .

[20]  L. Whiteside,et al.  Not All Zirconia Femoral Heads Degrade In Vivo , 2007, Clinical orthopaedics and related research.

[21]  R. Garvie,et al.  Stabilization of the tetragonal structure in zirconia microcrystals , 1978 .

[22]  D. Goutallier,et al.  Poor eight-year survival of cemented zirconia-polyethylene total hip replacements. , 1999, The Journal of bone and joint surgery. British volume.

[23]  J. Chevalier,et al.  Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. , 2004, Biomaterials.

[24]  S. Badwal,et al.  Formation of monoclinic zirconia at the anodic face of tetragonal zirconia polycrystalline solid electrolytes , 1989 .

[25]  F. H. Brown,et al.  The Zirconia‐Yttria System , 1951 .

[26]  Masahiko Shimada,et al.  Transformation of Yttria‐Doped Tetragonal ZrO2 Polycrystals by Annealing in Water , 1985 .

[27]  J. Chevalier,et al.  Subcritical Crack Propagation in 3Y‐TZP Ceramics: Static and Cyclic Fatigue , 2004 .

[28]  J. Chevalier,et al.  Modeling the aging kinetics of zirconia ceramics , 2004, 1710.04454.

[29]  I. Chen,et al.  Effect of Dopants on Zirconia Stabilization—An X‐ray Absorption Study: I, Trivalent Dopants , 1994 .

[30]  I. Denry,et al.  State of the art of zirconia for dental applications. , 2008, Dental materials : official publication of the Academy of Dental Materials.

[31]  Harushige Tsubakino,et al.  Martensite transformation behaviour during isothermal ageing in partially stabilized zirconia with and without alumina addition , 1993 .

[32]  Anil V. Virkar,et al.  Ferroelastic Domain Switching as a Toughening Mechanism in Tetragonal Zirconia , 1986 .

[33]  Carlos G. Levi,et al.  MATERIALS DESIGN FOR THE NEXT GENERATION THERMAL BARRIER COATINGS , 2003 .

[34]  Xin Guo,et al.  Water Incorporation in Tetragonal Zirconia , 2004 .

[35]  B. Muddle,et al.  An alternative approach to the crystallography of martensitic transformation in ZrO2 , 2006 .

[36]  N. Agmon,et al.  The Grotthuss mechanism , 1995 .

[37]  M. Anglada,et al.  The Fatigue Behaviour of Mg-PSZ and ZTA Ceramics , 1996 .

[38]  A. Virkar,et al.  Grinding-induced texture in ferroelastic tetragonal zirconia , 1990 .

[39]  H. Maekawa,et al.  Local structure analysis of YSZ by Y-89 MAS-NMR , 2006 .

[40]  D. J. Green Transformation Toughening Of Ceramics , 1988 .

[41]  B. Calès,et al.  Zirconia as a sliding material: histologic, laboratory, and clinical data. , 2000, Clinical orthopaedics and related research.

[42]  Byung‐Kook Kim,et al.  Determination of the Oxygen Self‐Diffusion Coefficients in Y2O3‐Containing Tetragonal Zirconia Polycrystals by Raman Spectrometric Monitoring of the 16O‐18O Exchange Reaction , 1993 .

[43]  T. Sato,et al.  TRANSFORMATION OF YTTRIA‐DOPED TETRAGONAL ZIRCONIA POLYCRYSTALS BY ANNEALING IN WATER , 1985 .

[44]  M. Yoshimura,et al.  Role of H2O on the degradation process of Y-TZP , 1987 .

[45]  Anil V. Virkar,et al.  Low-Temperature Aging of t′-Zirconia: The Role of Microstructure on Phase Stability , 1991 .

[46]  Mark Hoffman,et al.  Effect of Grain Size on Mechanical Properties of Submicrometer 3Y‐TZP: Fracture Strength and Hydrothermal Degradation , 2007 .

[47]  J. Chevalier,et al.  Low‐Temperature Aging of Y‐TZP Ceramics , 2004 .

[48]  M. Kakihana,et al.  Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application , 1996 .

[49]  D. Clarke,et al.  High temperature aging of YSZ coatings and subsequent transformation at low temperature , 2005 .

[50]  F. Frey,et al.  Stability of Y-TZP during hydrothermal treatment: neutron experiments and stability considerations , 2005 .

[51]  J. Chevalier,et al.  Key role of processing to avoid low temperature ageing in alumina zirconia composites for orthopaedic application , 2007 .

[52]  Claude M. Penchina,et al.  The physics of amorphous solids , 1983 .

[53]  O. Ruff,et al.  Beiträge zur Keramik hochfeuerfester Stoffe. l. Die Formen des Zirkondioxyds , 1929 .

[54]  Sylvain Deville,et al.  Percolative Mechanism of Aging in Zirconia‐Containing Ceramics for Medical Applications , 2003, 1804.08696.

[55]  A. Virkar Transport of H2, O2 and H2O through single-phase, two-phase and multi-phase mixed proton, oxygen ion, and electron hole conductors , 2001 .

[56]  A. Evans,et al.  On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t′) yttria-stabilized zirconia , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[57]  J. Chevalier,et al.  Martensitic transformation in zirconia: Part I. Nanometer scale prediction and measurement of transformation induced relief , 2004, 1804.01461.

[58]  M. Mayo,et al.  Crystallite and grain-size-dependent phase transformations in yttria-doped zirconia , 2003 .

[59]  M. Kakihana,et al.  Low-Temperature Phase Equilibria by the Flux Method and the Metastable–Stable Phase Diagram in the ZrO2–CeO2 System , 1994 .

[60]  David R. Clarke,et al.  Low-temperature transformation kinetics of electron-beam deposited 5 wt.% yttria-stabilized zirconia , 2007 .

[61]  R. Zallen,et al.  The Physics of Amorphous Solids: ZALLEN:PHYSICS OF AMORPHO O-BK , 2005 .

[62]  L. R. Francis Rose,et al.  The martensitic transformation in ceramics — its role in transformation toughening , 2002 .

[63]  H. G. Scott,et al.  Phase relationships in the zirconia-yttria system , 1975 .

[64]  F. Lange Transformation toughening , 1982 .

[65]  Brian M. Tissue,et al.  Energy Crossovers in Nanocrystalline Zirconia , 2004 .

[66]  Sylvain Deville,et al.  Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants , 2007 .

[67]  D. Clarke,et al.  Residual stresses in Al2O3ZrO2 composites: A test of stochastic stress models , 1994 .

[68]  Tapan K. Gupta,et al.  Stabilization of tetragonal phase in polycrystalline zirconia , 1977 .

[69]  J. Chevalier,et al.  Atomic force microscopy of transformation toughening in ceria-stabilized zirconia , 2005, 1710.04918.

[70]  J. Chevalier,et al.  Martensitic relief observation by atomic force microscopy in yttria-stabilized zirconia , 2003, 1710.04442.

[71]  Christoph Leyens,et al.  Some recent trends in research and technology of advanced thermal barrier coatings , 2003 .

[72]  T. Lepistö,et al.  A Model for Structural Degradation of Y-TZP Ceramics in Humid Atmosphere , 2008 .