Adaptive global stabilization of chained‐form systems with multiple disturbance and strong nonlinear drifts

[1]  Lei Guo,et al.  Composite disturbance‐observer‐based control and H∞ control for complex continuous models , 2010 .

[2]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[3]  Yan Zhao,et al.  Global asymptotic stability controller of uncertain nonholonomic systems , 2013, J. Frankl. Inst..

[4]  Lei Chen,et al.  Finite-Time Switching Control of Nonholonomic Mobile Robots for Moving Target Tracking Based on Polar Coordinates , 2018, Complex..

[5]  Xiaowu Mu,et al.  Adaptive stabilization of high order nonholonomic systems with strong nonlinear drifts , 2011 .

[6]  Zhong-Ping Jiang,et al.  Iterative design of time-varying stabilizers for multi-input systems in chained form , 1996 .

[7]  Saleh Mobayen,et al.  Finite-time tracking control of nth-order chained-form non-holonomic systems in the presence of disturbances. , 2016, ISA transactions.

[8]  Shengyuan Xu,et al.  H∞ model reduction for discrete-time singular systems , 2003, Syst. Control. Lett..

[9]  Hamid Reza Karimi,et al.  Anti-disturbance control based on disturbance observer for nonlinear systems with bounded disturbances , 2018, J. Frankl. Inst..

[10]  Saleh Mobayen,et al.  Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties. , 2017, ISA transactions.

[11]  Carlos Canudas de Wit,et al.  Theory of Robot Control , 1996 .

[12]  A. Astolfi Discontinuous control of nonholonomic systems , 1996 .

[13]  Ya Zhang,et al.  Distributed Robust Kalman Filtering with Unknown and Noisy Parameters in Sensor Networks , 2018 .

[14]  Eam Khwang Teoh,et al.  Asymptotic Stabilization of Nonholonomic Robots Leveraging Singularity , 2019, IEEE Robotics and Automation Letters.

[15]  Wen-Hua Chen,et al.  Disturbance observer based control for nonlinear systems , 2004 .

[16]  Peng Shi,et al.  Backstepping Control in Vector Form for Stochastic Hamiltonian Systems , 2012, SIAM J. Control. Optim..

[17]  Jun Yang,et al.  Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach. , 2011, ISA transactions.

[18]  Peter J. Gawthrop,et al.  A nonlinear disturbance observer for robotic manipulators , 2000, IEEE Trans. Ind. Electron..

[19]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[20]  Haifei Liu,et al.  Credit Risk Contagion in an Evolving Network Model Integrating Spillover Effects and Behavioral Interventions , 2018, Complex..

[21]  Lei Guo,et al.  Anti-disturbance control theory for systems with multiple disturbances: a survey. , 2014, ISA transactions.

[22]  R. M. Brisilla,et al.  Extended State Observer-Based Sliding Mode Control for Multi-input Multi-output System with Multiple Disturbances , 2016, Journal of Control, Automation and Electrical Systems.

[23]  Zhong-Ping Jiang,et al.  Robust exponential regulation of nonholonomic systems with uncertainties , 2000, Autom..

[24]  Saleh Mobayen,et al.  Disturbance observer and finite-time tracker design of disturbed third-order nonholonomic systems using terminal sliding mode , 2017 .

[25]  Fangzheng Gao,et al.  Adaptive finite-time stabilization for a class of uncertain high order nonholonomic systems. , 2015, ISA transactions.

[26]  Yasir Awais Butt,et al.  Robust stabilization of a class of nonholonomic systems using logical switching and integral sliding mode control , 2017, Alexandria Engineering Journal.

[27]  Kui Li,et al.  Finite-time tracking control for extended nonholonomic chained-form systems with parametric uncertainty and external disturbance , 2018 .

[28]  Khac Duc Do,et al.  Adaptive global stabilization of nonholonomic systems with strong nonlinear drifts , 2002, Syst. Control. Lett..

[29]  Zhong-Ping Jiang,et al.  Backstepping-based adaptive controllers for uncertain nonholonomic systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.