Weak arithmetical interpretations for the Logic of Proofs

Artemov established an arithmetical interpretation for the Logics of Proofs LPCS, which yields a classical provability semantics for the modal logic S4. These Logics of Proofs are parameterized by so-called constant specifications CS that state which axioms can be used in the reasoning process, and the arithmetical interpretation relies on the constant specifications being finite. In this paper, we remove this restriction by introducing weak arithmetical interpretations that are sound and complete for a wide class of constant specifications, including infinite ones. In particular, they interpret the full Logic of Proofs LP.

[1]  LU Nai-ji On the Explicit Knowledge , 2006 .

[2]  Sergei N. Artemovy Operational Modal Logic , 1995 .

[3]  Joshua Sack,et al.  Justified belief change , 2010 .

[4]  Thomas Studer,et al.  Partial Realization in Dynamic Justification Logic , 2011, WoLLIC.

[5]  H. Hornich,et al.  Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie , 1936 .

[6]  Thomas Studer Decidability for some justification logics with negative introspection , 2013, J. Symb. Log..

[7]  G. Small The City University of New York. , 2010, Annals of the New York Academy of Sciences.

[8]  Thomas Studer,et al.  Update as Evidence: Belief Expansion , 2013, LFCS.

[9]  Sergei N. Artëmov,et al.  Complexity issues in justification logic , 2008 .

[10]  Hans Hahn,et al.  Ergebnisse eines mathematischen Kolloquiums , 1932 .

[11]  B. Hammond Ontology , 2004, Lawrence Booth’s Book of Visions.

[12]  V. Svejdar On provability logic , 1999 .

[13]  Thomas Studer,et al.  Decidability for Justification Logics Revisited , 2011, TbiLLC.

[14]  A. Troelstra,et al.  Constructivism in Mathematics: An Introduction , 1988 .

[15]  Thomas Studer,et al.  Justifications, Ontology, and Conservativity , 2012, Advances in Modal Logic.

[16]  L. Henkin Review: J. C. C. McKinsey, Alfred Tarski, Some Theorems About the Sentential Calculi of Lewis and Heyting , 1948 .

[17]  Sergei N. Artëmov The Ontology of Justifications in the Logical Setting , 2012, Stud Logica.

[18]  J. Girard Proof Theory and Logical Complexity , 1989 .

[19]  Sergei N. Artëmov,et al.  The Logic of the Gödel Proof Predicate , 1993, Kurt Gödel Colloquium.

[20]  Alexandru Baltag,et al.  The logic of justified belief, explicit knowledge, and conclusive evidence , 2014, Ann. Pure Appl. Log..

[21]  G. Boolos The logic of provability , 1993 .

[22]  Melvin Fitting,et al.  The logic of proofs, semantically , 2005, Ann. Pure Appl. Log..

[23]  Sergei N. Artëmov,et al.  The Basic Logic of Proofs , 1992, CSL.

[24]  Hidenori Kurokawa,et al.  The Paradox of the Knower revisited , 2014, Ann. Pure Appl. Log..

[25]  Roman Kuznets,et al.  Realization for justification logics via nested sequents: Modularity through embedding , 2012, Ann. Pure Appl. Log..

[26]  Sergei N. Artëmov THE LOGIC OF JUSTIFICATION , 2008, The Review of Symbolic Logic.

[27]  Rune B. Lyngsø,et al.  Lecture Notes I , 2008 .

[28]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[29]  Alexey Mkrtychev,et al.  Models for the Logic of Proofs , 1997, LFCS.

[30]  Alfred Tarski,et al.  Some theorems about the sentential calculi of Lewis and Heyting , 1948, The Journal of Symbolic Logic.

[31]  A. Kolmogoroff Zur Deutung der intuitionistischen Logik , 1932 .

[32]  Bryan Renne,et al.  Public communication in justification logic , 2011, J. Log. Comput..

[33]  Sergei N. Artëmov Explicit provability and constructive semantics , 2001, Bull. Symb. Log..

[34]  A. Heyting Die intuitionistische Grundlegung der Mathematik , 1931 .

[35]  Evan Goris,et al.  Feasible Operations on Proofs: The Logic of Proofs for Bounded Arithmetic , 2008, Theory of Computing Systems.