Discrete damage zone model for fracture initiation and propagation

Abstract We propose a discrete damage zone model (DDZM) aimed at simulating fracture initiation and propagation within the framework of the finite element method. In this approach, rather than employing specific cohesive laws, we employ damage laws to prescribe both interface spring softening and bulk material stiffness degradation to study crack propagation. For a homogeneous isotropic material the same damage law is assumed to hold in both the continuum and the interface elements. The irreversibility of damage naturally accounts for the reduction in material strength and stiffness if the material was previously loaded beyond the elastic limit. The model parameters for interface element are calculated from the principles of linear elastic fracture mechanics. The model is implemented in Abaqus and numerical results for single-mode as well as mixed-mode delamination are presented. The results are in good agreement with those obtained from the virtual crack closure technique (VCCT) and available analytical solutions, thus, illustrating the validity of this approach. Finally, the suitability of the method for studying fracture in fiber–matrix composites involving fiber debonding and matrix cracking is demonstrated.

[1]  J. G. Williams,et al.  The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints , 2003 .

[2]  R. Borst Numerical aspects of cohesive-zone models , 2003 .

[3]  Glaucio H. Paulino,et al.  A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material , 2006 .

[4]  Z. P. Bažant,et al.  Size effect on structural strength: a review , 1999 .

[5]  E. M. Wu,et al.  CRACK EXTENSION IN FIBERGLASS REINFORCED PLASTICS , 1965 .

[6]  Somnath Ghosh,et al.  Multiple cohesive crack growth in brittle materials by the extended Voronoi cell finite element model , 2006 .

[7]  Michael R Wisnom,et al.  A combined stress-based and fracture-mechanics-based model for predicting delamination in composites , 1993 .

[8]  T. Besant,et al.  Delamination growth prediction using a finite element approach , 2000 .

[9]  Anthony J. Kinloch,et al.  Measuring the mode I adhesive fracture energy, GIC, of structural adhesive joints: the results of an international round-robin , 2003 .

[10]  F. J. Mello,et al.  Modeling the Initiation and Growth of Delaminations in Composite Structures , 1996 .

[11]  Horacio Dante Espinosa,et al.  A finite deformation continuum\discrete model for the description of fragmentation and damage in brittle materials , 1998 .

[12]  P. Beaurepaire,et al.  Modeling of the variability of fatigue crack growth using cohesive zone elements , 2011, Engineering fracture mechanics.

[13]  J. Dear,et al.  The calculation of adhesive fracture energies from double-cantilever beam test specimens , 1991 .

[14]  Glaucio H. Paulino,et al.  A unified potential-based cohesive model of mixed-mode fracture , 2009 .

[15]  P. Geubelle,et al.  Impact-induced delamination of composites: A 2D simulation , 1998 .

[16]  Brian N. Cox,et al.  The determination of crack bridging forces , 1991, International Journal of Fracture.

[17]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[18]  De Xie,et al.  Discrete Cohesive Zone Model to Simulate Static Fracture in 2D Triaxially Braided Carbon Fiber Composites , 2006 .

[19]  P. Krysl,et al.  Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture , 1999 .

[20]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[21]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[22]  Michael Ortiz,et al.  A cohesive model of fatigue crack growth , 2001 .

[23]  De Xie,et al.  Discrete cohesive zone model for mixed-mode fracture using finite element analysis , 2006 .

[24]  Glaucio H. Paulino,et al.  Mode I fracture of adhesive joints using tailored cohesive zone models , 2008 .

[25]  Horacio Dante Espinosa,et al.  A computational model of ceramic microstructures subjected to multi-axial dynamic loading , 2001 .

[26]  Pedro P. Camanho,et al.  A continuum damage model for composite laminates: Part II – Computational implementation and validation , 2007 .

[27]  Magd Abdel Wahab,et al.  Damage modelling of adhesively bonded joints , 2006 .

[28]  T. Siegmund,et al.  An irreversible cohesive zone model for interface fatigue crack growth simulation , 2003 .

[29]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[30]  Glaucio H. Paulino,et al.  Simulation of Crack Propagation in Asphalt Concrete Using an Intrinsic Cohesive Zone Model , 2006 .

[31]  Thomas Siegmund,et al.  A numerical study of transient fatigue crack growth by use of an irreversible cohesive zone model , 2004 .

[32]  I. Raju Calculation of strain-energy release rates with higher order and singular finite elements , 1987 .

[33]  Glaucio H. Paulino,et al.  Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials , 2005 .

[34]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[35]  H. Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation , 2003 .

[36]  John H. Crews,et al.  The mixed-mode bending method for delamination testing , 1989 .

[37]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[38]  Jr. J. Crews,et al.  Mixed-Mode Bending Method for Delamination Testing , 1990 .

[39]  Jacob Fish,et al.  Computational damage mechanics for composite materials based on mathematical homogenization , 1999 .

[40]  H. Waisman,et al.  A temperature dependent creep damage model for polycrystalline ice , 2012 .

[41]  Somnath Ghosh,et al.  Extended Voronoi cell finite element model for multiple cohesive crack propagation in brittle materials , 2006 .

[42]  René de Borst,et al.  Some recent issues in computational failure mechanics , 2001 .

[43]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[44]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[45]  G. Irwin ANALYSIS OF STRESS AND STRAINS NEAR THE END OF A CRACK TRAVERSING A PLATE , 1957 .

[46]  J. Mazars A description of micro- and macroscale damage of concrete structures , 1986 .

[47]  Horacio Dante Espinosa,et al.  Grain level analysis of crack initiation and propagation in brittle materials , 2001 .

[48]  A. Waas,et al.  Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer–matrix composite , 2006 .

[49]  J. G. Williams,et al.  The calculation of adhesive fracture energies in mode I: revisiting the tapered double cantilever beam (TDCB) test , 2003 .

[50]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .