Modeling 3D human poses from uncalibrated monocular images

This paper introduces an efficient algorithm that reconstructs 3D human poses as well as camera parameters from a small number of 2D point correspondences obtained from uncalibrated monocular images. This problem is challenging because 2D image constraints (e.g. 2D point correspondences) are often not sufficient to determine 3D poses of an articulated object. The key idea of this paper is to identify a set of new constraints and use them to eliminate the ambiguity of 3D pose reconstruction. We also develop an optimization process to simultaneously reconstruct both human poses and camera parameters from various forms of reconstruction constraints. We demonstrate the power and effectiveness of our system by evaluating the performance of the algorithm on both real and synthetic data. We show the algorithm can accurately reconstruct 3D poses and camera parameters from a wide variety of real images, including internet photos and key frames extracted from monocular video sequences.

[1]  Ankur Agarwal,et al.  3D human pose from silhouettes by relevance vector regression , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[2]  Rómer Rosales,et al.  Inferring body pose without tracking body parts , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[3]  Ioannis A. Kakadiaris,et al.  Estimating anthropometry and pose from a single image , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[4]  Camillo J. Taylor,et al.  Reconstruction of Articulated Objects from Point Correspondences in a Single Uncalibrated Image , 2000, Comput. Vis. Image Underst..

[5]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[6]  Ian D. Reid,et al.  Articulated structure from motion by factorization , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[7]  Ahmed M. Elgammal,et al.  Inferring 3D body pose from silhouettes using activity manifold learning , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[8]  Marc Pollefeys,et al.  Automatic Kinematic Chain Building from Feature Trajectories of Articulated Objects , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[9]  Mun Wai Lee,et al.  Proposal maps driven MCMC for estimating human body pose in static images , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[10]  Rama Chellappa,et al.  View independent human body pose estimation from a single perspective image , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..