A Unifying Review of Deep and Shallow Anomaly Detection

Deep learning approaches to anomaly detection (AD) have recently improved the state of the art in detection performance on complex data sets, such as large collections of images or text. These results have sparked a renewed interest in the AD problem and led to the introduction of a great variety of new methods. With the emergence of numerous such methods, including approaches based on generative models, one-class classification, and reconstruction, there is a growing need to bring methods of this field into a systematic and unified perspective. In this review, we aim to identify the common underlying principles and the assumptions that are often made implicitly by various methods. In particular, we draw connections between classic “shallow” and novel deep approaches and show how this relation might cross-fertilize or extend both directions. We further provide an empirical assessment of major existing methods that are enriched by the use of recent explainability techniques and present specific worked-through examples together with practical advice. Finally, we outline critical open challenges and identify specific paths for future research in AD.

[1]  F. Y. Edgeworth,et al.  XLI. On discordant observations , 1887 .

[2]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[3]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[4]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[5]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[6]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[7]  C. K. Chow,et al.  An optimum character recognition system using decision functions , 1957, IRE Trans. Electron. Comput..

[8]  Thomas S. Ferguson,et al.  On the Rejection of Outliers , 1961 .

[9]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[10]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[11]  F. E. Grubbs Procedures for Detecting Outlying Observations in Samples , 1969 .

[12]  C. K. Chow,et al.  On optimum recognition error and reject tradeoff , 1970, IEEE Trans. Inf. Theory.

[13]  M. Otto,et al.  Outliers in Time Series , 1972 .

[14]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[15]  Douglas M. Hawkins,et al.  The Detection of Errors in Multivariate Data Using Principal Components , 1974 .

[16]  T. C. Minter,et al.  Single-Class Classification , 1975 .

[17]  G. Box Science and Statistics , 1976 .

[18]  J. E. Jackson,et al.  Control Procedures for Residuals Associated With Principal Component Analysis , 1979 .

[19]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[20]  Douglas M. Hawkins Identification of Outliers , 1980, Monographs on Applied Probability and Statistics.

[21]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[22]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Geoffrey E. Hinton,et al.  Massively Parallel Architectures for AI: NETL, Thistle, and Boltzmann Machines , 1983, AAAI.

[24]  P. Rousseeuw Multivariate estimation with high breakdown point , 1985 .

[25]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[26]  Josef Schmee,et al.  Outliers in Statistical Data (2nd ed.) , 1986 .

[27]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[28]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[29]  Dana H. Ballard,et al.  Modular Learning in Neural Networks , 1987, AAAI.

[30]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[31]  L. Devroye,et al.  Nonparametric density estimation : the L[1] view , 1987 .

[32]  R. Tsay Outliers, Level Shifts, and Variance Changes in Time Series , 1988 .

[33]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[34]  Howard Wainer,et al.  Robust Regression & Outlier Detection , 1988 .

[35]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[36]  Kurt Hornik,et al.  Neural networks and principal component analysis: Learning from examples without local minima , 1989, Neural Networks.

[37]  Geoffrey E. Hinton Connectionist Learning Procedures , 1989, Artif. Intell..

[38]  H. Arp Discordant observations. , 1990, Science.

[39]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[40]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[41]  J. Urgen Schmidhuber,et al.  Learning Factorial Codes by Predictability Minimization , 1992, Neural Computation.

[42]  W. Härdle Applied Nonparametric Regression , 1992 .

[43]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[44]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[45]  M. M. Moya,et al.  One-class classifier networks for target recognition applications , 1993 .

[46]  Christopher M. Bishop,et al.  Novelty detection and neural network validation , 1994 .

[47]  Stephen J. Roberts,et al.  A Probabilistic Resource Allocating Network for Novelty Detection , 1994, Neural Computation.

[48]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[49]  Nathalie Japkowicz,et al.  A Novelty Detection Approach to Classification , 1995, IJCAI.

[50]  W. Polonik Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach , 1995 .

[51]  Michael Brady,et al.  Novelty detection for the identification of masses in mammograms , 1995 .

[52]  Lucas C. Parra,et al.  Statistical Independence and Novelty Detection with Information Preserving Nonlinear Maps , 1996, Neural Computation.

[53]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[54]  Don R. Hush,et al.  Network constraints and multi-objective optimization for one-class classification , 1996, Neural Networks.

[55]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[56]  R. Blender,et al.  Identification of cyclone‐track regimes in the North Atlantic , 1997 .

[57]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[58]  A. Tsybakov On nonparametric estimation of density level sets , 1997 .

[59]  W. Polonik Minimum volume sets and generalized quantile processes , 1997 .

[60]  Shai Ben-David,et al.  Learning Distributions by Their Density Levels: A Paradigm for Learning without a Teacher , 1997, J. Comput. Syst. Sci..

[61]  Frann Cois Denis,et al.  PAC Learning from Positive Statistical Queries , 1998, ALT.

[62]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[63]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[64]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[65]  P. Huynh,et al.  The false-negative mammogram. , 1998, Radiographics : a review publication of the Radiological Society of North America, Inc.

[66]  Christopher M. Bishop,et al.  Bayesian PCA , 1998, NIPS.

[67]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[68]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[69]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[70]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[71]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[72]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[73]  Raymond T. Ng,et al.  Distance-based outliers: algorithms and applications , 2000, The VLDB Journal.

[74]  Martti Juhola,et al.  Informal identification of outliers in medical data , 2000 .

[75]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[76]  A. Culyer,et al.  False-negative results in screening programmes: systematic review of impact and implications. , 2000, Health technology assessment.

[77]  Yoshua Bengio,et al.  A Neural Probabilistic Language Model , 2003, J. Mach. Learn. Res..

[78]  R. Tsay,et al.  Outliers in multivariate time series , 2000 .

[79]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[80]  Sridhar Ramaswamy,et al.  Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD '00.

[81]  David J.C. Mackay,et al.  Density networks , 2000 .

[82]  Dong Xiang,et al.  Information-theoretic measures for anomaly detection , 2001, Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001.

[83]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[84]  Malik Yousef,et al.  One-Class SVMs for Document Classification , 2002, J. Mach. Learn. Res..

[85]  David M. J. Tax,et al.  One-class classification , 2001 .

[86]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[87]  T. Cover,et al.  Rate Distortion Theory , 2001 .

[88]  Michael I. Jordan,et al.  Robust Novelty Detection with Single-Class MPM , 2002, NIPS.

[89]  Hongxing He,et al.  Outlier Detection Using Replicator Neural Networks , 2002, DaWaK.

[90]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[91]  Gunnar Rätsch,et al.  Constructing Boosting Algorithms from SVMs: An Application to One-Class Classification , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[92]  Tudor I. Oprea,et al.  Chemical space navigation in lead discovery. , 2002, Current opinion in chemical biology.

[93]  David J. Hand,et al.  Statistical fraud detection: A review , 2002 .

[94]  Kwang-Hyun Cho,et al.  Level sets and minimum volume sets of probability density functions , 2003, Int. J. Approx. Reason..

[95]  Salvatore J. Stolfo,et al.  Using artificial anomalies to detect unknown and known network intrusions , 2003, Knowledge and Information Systems.

[96]  Sameer Singh,et al.  Novelty detection: a review - part 1: statistical approaches , 2003, Signal Process..

[97]  Diane J. Cook,et al.  Graph-based anomaly detection , 2003, KDD '03.

[98]  James Theiler,et al.  Resampling approach for anomaly detection in multispectral images , 2003, SPIE Defense + Commercial Sensing.

[99]  Sameer Singh,et al.  Novelty detection: a review - part 2: : neural network based approaches , 2003, Signal Process..

[100]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[101]  M. Shyu,et al.  A Novel Anomaly Detection Scheme Based on Principal Component Classifier , 2003 .

[102]  Andrew W. Moore,et al.  Bayesian Network Anomaly Pattern Detection for Disease Outbreaks , 2003, ICML.

[103]  Volker Roth,et al.  Outlier Detection with One-class Kernel Fisher Discriminants , 2004, NIPS.

[104]  P. Laskov,et al.  Intrusion Detection in Unlabeled Data with Quarter-sphere Support Vector Machines , 2004, Prax. Inf.verarb. Kommun..

[105]  John D. Lee,et al.  Trust in Automation: Designing for Appropriate Reliance , 2004, Hum. Factors.

[106]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[107]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[108]  Andrew W. Moore,et al.  Active Learning for Anomaly and Rare-Category Detection , 2004, NIPS.

[109]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[110]  J. Tchinda,et al.  Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. , 2006, Science.

[111]  Don R. Hush,et al.  A Classification Framework for Anomaly Detection , 2005, J. Mach. Learn. Res..

[112]  Robert D. Nowak,et al.  Learning Minimum Volume Sets , 2005, J. Mach. Learn. Res..

[113]  P. Qiu The Statistical Evaluation of Medical Tests for Classification and Prediction , 2005 .

[114]  P. Protopapas,et al.  Finding outlier light curves in catalogues of periodic variable stars , 2005, astro-ph/0505495.

[115]  Sanjay Chawla,et al.  SLOM: a new measure for local spatial outliers , 2006, Knowledge and Information Systems.

[116]  Vipin Kumar,et al.  Feature bagging for outlier detection , 2005, KDD '05.

[117]  Andrew W. Moore,et al.  What's Strange About Recent Events (WSARE): An Algorithm for the Early Detection of Disease Outbreaks , 2005, J. Mach. Learn. Res..

[118]  Yi Liu,et al.  Minimum Enclosing and Maximum Excluding Machine for Pattern Description and Discrimination , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[119]  Steven Walfish,et al.  A review of statistical outlier methods , 2006 .

[120]  Rasmus Larsen,et al.  The Entire Regularization Path for the Support Vector Domain Description , 2006, MICCAI.

[121]  Jean-Philippe Vert,et al.  Consistency and Convergence Rates of One-Class SVMs and Related Algorithms , 2006, J. Mach. Learn. Res..

[122]  Sylvia Frühwirth-Schnatter,et al.  Finite Mixture and Markov Switching Models , 2006 .

[123]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[124]  Javier M. Moguerza,et al.  Estimation of high-density regions using one-class neighbor machines , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[125]  Ran El-Yaniv,et al.  Optimal Single-Class Classification Strategies , 2006, NIPS.

[126]  Richard Baraniuk,et al.  Learning Minimum Volume Sets with Support Vector Machines , 2006, 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing.

[127]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[128]  Bianca Zadrozny,et al.  Outlier detection by active learning , 2006, KDD '06.

[129]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[130]  Fu Jie Huang,et al.  A Tutorial on Energy-Based Learning , 2006 .

[131]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[132]  Ling Huang,et al.  In-Network PCA and Anomaly Detection , 2006, NIPS.

[133]  Klaus-Robert Müller,et al.  From outliers to prototypes: Ordering data , 2006, Neurocomputing.

[134]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[135]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[136]  Volker Roth,et al.  Kernel Fisher Discriminants for Outlier Detection , 2006, Neural Computation.

[137]  Sanjay Ranka,et al.  Conditional Anomaly Detection , 2007, IEEE Transactions on Knowledge and Data Engineering.

[138]  Heiko Hoffmann,et al.  Kernel PCA for novelty detection , 2007, Pattern Recognit..

[139]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[140]  Klaus-Robert Müller,et al.  Covariate Shift Adaptation by Importance Weighted Cross Validation , 2007, J. Mach. Learn. Res..

[141]  Thomas Lengauer,et al.  Bioinformatics prediction of HIV coreceptor usage , 2007, Nature Biotechnology.

[142]  Haimonti Dutta,et al.  Distributed Top-K Outlier Detection from Astronomy Catalogs using the DEMAC System , 2007, SDM.

[143]  Jung-Min Park,et al.  An overview of anomaly detection techniques: Existing solutions and latest technological trends , 2007, Comput. Networks.

[144]  Carl E. Rasmussen,et al.  The Need for Open Source Software in Machine Learning , 2007, J. Mach. Learn. Res..

[145]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[146]  R. Tibshirani,et al.  Outlier sums for differential gene expression analysis. , 2007, Biostatistics.

[147]  Gyemin Lee,et al.  The One Class Support Vector Machine Solution Path , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[148]  Zhi-Hua Zhou,et al.  Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[149]  Yves Grandvalet,et al.  Support Vector Machines with a Reject Option , 2008, NIPS.

[150]  Fernando De la Torre,et al.  Robust Kernel Principal Component Analysis , 2008, NIPS.

[151]  Joachim M. Buhmann,et al.  On Relevant Dimensions in Kernel Feature Spaces , 2008, J. Mach. Learn. Res..

[152]  Peter L. Bartlett,et al.  Classification with a Reject Option using a Hinge Loss , 2008, J. Mach. Learn. Res..

[153]  Clayton D. Scott,et al.  Robust kernel density estimation , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[154]  John Platt,et al.  ALADIN: Active Learning of Anomalies to Detect Intrusion , 2008 .

[155]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[156]  Robert P. W. Duin,et al.  Growing a multi-class classifier with a reject option , 2008, Pattern Recognit. Lett..

[157]  Asma Rabaoui,et al.  Using One-Class SVMs and Wavelets for Audio Surveillance , 2008, IEEE Transactions on Information Forensics and Security.

[158]  Wanli Zuo,et al.  Learning from Positive and Unlabeled Examples: A Survey , 2008, 2008 International Symposiums on Information Processing.

[159]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[160]  Nojun Kwak,et al.  Principal Component Analysis Based on L1-Norm Maximization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[161]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[162]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[163]  Robert P. W. Duin,et al.  Minimum spanning tree based one-class classifier , 2009, Neurocomputing.

[164]  Brigitte Verdonk,et al.  Discovering novelty in spatio/temporal data using one-class support vector machines , 2009, 2009 International Joint Conference on Neural Networks.

[165]  Lawrence K. Saul,et al.  Identifying suspicious URLs: an application of large-scale online learning , 2009, ICML '09.

[166]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[167]  Geoffrey E. Hinton,et al.  Deep Boltzmann Machines , 2009, AISTATS.

[168]  Marius Kloft,et al.  Active and Semi-supervised Data Domain Description , 2009, ECML/PKDD.

[169]  P. Rigollet,et al.  Optimal rates for plug-in estimators of density level sets , 2006, math/0611473.

[170]  Venkatesh Saligrama,et al.  Anomaly Detection with Score functions based on Nearest Neighbor Graphs , 2009, NIPS.

[171]  Ali S. Hadi,et al.  Detection of outliers , 2009 .

[172]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[173]  Honglak Lee,et al.  Unsupervised feature learning for audio classification using convolutional deep belief networks , 2009, NIPS.

[174]  Neil D. Lawrence,et al.  Dataset Shift in Machine Learning , 2009 .

[175]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[176]  Robert Pless,et al.  A Survey of Manifold Learning for Images , 2009, IPSJ Trans. Comput. Vis. Appl..

[177]  Motoaki Kawanabe,et al.  How to Explain Individual Classification Decisions , 2009, J. Mach. Learn. Res..

[178]  Ashok N. Srivastava,et al.  Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study , 2010, KDD.

[179]  Takafumi Kanamori,et al.  Statistical outlier detection using direct density ratio estimation , 2011, Knowledge and Information Systems.

[180]  Gyemin Lee,et al.  Nested Support Vector Machines , 2008, IEEE Transactions on Signal Processing.

[181]  Gilles Blanchard,et al.  Semi-Supervised Novelty Detection , 2010, J. Mach. Learn. Res..

[182]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[183]  Aapo Hyvärinen,et al.  Noise-contrastive estimation: A new estimation principle for unnormalized statistical models , 2010, AISTATS.

[184]  Vivekanand Gopalkrishnan,et al.  Mining Outliers with Ensemble of Heterogeneous Detectors on Random Subspaces , 2010, DASFAA.

[185]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[186]  Pascal Vincent,et al.  Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.

[187]  Barnabás Póczos,et al.  Group Anomaly Detection using Flexible Genre Models , 2011, NIPS.

[188]  Kuldeep Kumar,et al.  Robust Statistics, 2nd edn , 2011 .

[189]  Chandan Srivastava,et al.  Support Vector Data Description , 2011 .

[190]  Siddhartha Bhattacharyya,et al.  Data mining for credit card fraud: A comparative study , 2011, Decis. Support Syst..

[191]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[192]  Jiquan Ngiam,et al.  Learning Deep Energy Models , 2011, ICML.

[193]  Jugal K. Kalita,et al.  A Survey of Outlier Detection Methods in Network Anomaly Identification , 2011, Comput. J..

[194]  Pascal Poncelet,et al.  Anomaly detection in monitoring sensor data for preventive maintenance , 2011, Expert Syst. Appl..

[195]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[196]  Donald H. Rumsfeld Known and Unknown: A Memoir , 2011 .

[197]  M. Herold,et al.  Near real-time disturbance detection using satellite image time series , 2012 .

[198]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[199]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[200]  Shuchita Upadhyaya,et al.  Outlier Detection: Applications And Techniques , 2012 .

[201]  Vipin Kumar,et al.  Anomaly Detection for Discrete Sequences: A Survey , 2012, IEEE Transactions on Knowledge and Data Engineering.

[202]  Hans-Peter Kriegel,et al.  Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection , 2012, Data Mining and Knowledge Discovery.

[203]  Dong Yu,et al.  Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[204]  Marius Kloft,et al.  Security analysis of online centroid anomaly detection , 2010, J. Mach. Learn. Res..

[205]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[206]  Hamid R. Rabiee,et al.  A Bayesian Approach to the Data Description Problem , 2012, AAAI.

[207]  Julien Marzat,et al.  Model-based fault diagnosis for aerospace systems: a survey , 2012 .

[208]  Hans-Peter Kriegel,et al.  A survey on unsupervised outlier detection in high‐dimensional numerical data , 2012, Stat. Anal. Data Min..

[209]  Klaus-Robert Müller,et al.  Efficient BackProp , 2012, Neural Networks: Tricks of the Trade.

[210]  Geoffrey E. Hinton,et al.  Acoustic Modeling Using Deep Belief Networks , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[211]  Motoaki Kawanabe,et al.  Machine Learning in Non-Stationary Environments - Introduction to Covariate Shift Adaptation , 2012, Adaptive computation and machine learning.

[212]  Katharina Morik,et al.  Anomaly Detection in Vertically Partitioned Data by Distributed Core Vector Machines , 2013, ECML/PKDD.

[213]  Ji Zhang,et al.  Advancements of Outlier Detection: A Survey , 2013, EAI Endorsed Trans. Scalable Inf. Syst..

[214]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[215]  Clayton D. Scott,et al.  Consistency of Robust Kernel Density Estimators , 2013, COLT.

[216]  David Page,et al.  Area under the Precision-Recall Curve: Point Estimates and Confidence Intervals , 2013, ECML/PKDD.

[217]  Herman Aguinis,et al.  Best-Practice Recommendations for Defining, Identifying, and Handling Outliers , 2013 .

[218]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[219]  Ira Assent,et al.  Local Outlier Detection with Interpretation , 2013, ECML/PKDD.

[220]  Chun-Hung Richard Lin,et al.  Intrusion detection system: A comprehensive review , 2013, J. Netw. Comput. Appl..

[221]  Jérémie Jakubowicz,et al.  Scoring anomalies: a M-estimation formulation , 2013, AISTATS.

[222]  Ira Assent,et al.  Explaining Outliers by Subspace Separability , 2013, 2013 IEEE 13th International Conference on Data Mining.

[223]  Joshua Glasser,et al.  Bridging the Gap: A Pragmatic Approach to Generating Insider Threat Data , 2013, 2013 IEEE Security and Privacy Workshops.

[224]  Anderson Rocha,et al.  Toward Open Set Recognition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[225]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[226]  Huangang Wang,et al.  L1 norm based KPCA for novelty detection , 2013, Pattern Recognit..

[227]  Bernhard Schölkopf,et al.  One-Class Support Measure Machines for Group Anomaly Detection , 2013, UAI.

[228]  Michael Lindenbaum,et al.  q-OCSVM: A q-Quantile Estimator for High-Dimensional Distributions , 2013, NIPS.

[229]  David J. Hand,et al.  Classification and Anomaly Detection for Astronomical Survey Data , 2013 .

[230]  Thomas G. Dietterich,et al.  Systematic construction of anomaly detection benchmarks from real data , 2013, ODD '13.

[231]  Marius Kloft,et al.  Toward Supervised Anomaly Detection , 2014, J. Artif. Intell. Res..

[232]  Gang Niu,et al.  Analysis of Learning from Positive and Unlabeled Data , 2014, NIPS.

[233]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[234]  Erich Elsen,et al.  Deep Speech: Scaling up end-to-end speech recognition , 2014, ArXiv.

[235]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[236]  Arthur Zimek,et al.  Discriminative features for identifying and interpreting outliers , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[237]  Charu C. Aggarwal,et al.  Outlier Detection for Temporal Data: A Survey , 2014, IEEE Transactions on Knowledge and Data Engineering.

[238]  Gang Hua,et al.  Unsupervised One-Class Learning for Automatic Outlier Removal , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[239]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[240]  James Bailey,et al.  Mining outlying aspects on numeric data , 2015, Data Mining and Knowledge Discovery.

[241]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[242]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[243]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[244]  Terrance E. Boult,et al.  Probability Models for Open Set Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[245]  David A. Clifton,et al.  A review of novelty detection , 2014, Signal Process..

[246]  Shehroz S. Khan,et al.  One-class classification: taxonomy of study and review of techniques , 2013, The Knowledge Engineering Review.

[247]  Danai Koutra,et al.  Graph based anomaly detection and description: a survey , 2014, Data Mining and Knowledge Discovery.

[248]  B. Minaei-Bidgoli,et al.  Using Data Mining to Detect Health Care Fraud and Abuse: A Review of Literature , 2014, Global journal of health science.

[249]  Brendan J. Frey,et al.  k-Sparse Autoencoders , 2013, ICLR.

[250]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[251]  Ammar Belatreche,et al.  An experimental evaluation of novelty detection methods , 2014, Neurocomputing.

[252]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[253]  Sungzoon Cho,et al.  Variational Autoencoder based Anomaly Detection using Reconstruction Probability , 2015 .

[254]  Subutai Ahmad,et al.  Evaluating Real-Time Anomaly Detection Algorithms -- The Numenta Anomaly Benchmark , 2015, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA).

[255]  Nour Moustafa,et al.  UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set) , 2015, 2015 Military Communications and Information Systems Conference (MilCIS).

[256]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[257]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[258]  Arthur Zimek,et al.  On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study , 2016, Data Mining and Knowledge Discovery.

[259]  Steve Harenberg,et al.  Anomaly detection in dynamic networks: a survey , 2015 .

[260]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[261]  Saeed Amizadeh,et al.  Generic and Scalable Framework for Automated Time-series Anomaly Detection , 2015, KDD.

[262]  José M. Molina López,et al.  Anomaly Detection Based on Sensor Data in Petroleum Industry Applications , 2015, Sensors.

[263]  Shikha Agrawal,et al.  Survey on Anomaly Detection using Data Mining Techniques , 2015, KES.

[264]  Lovekesh Vig,et al.  Anomaly detection in ECG time signals via deep long short-term memory networks , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[265]  Julien Cornebise,et al.  Weight Uncertainty in Neural Network , 2015, ICML.

[266]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[267]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[268]  Anne Sabourin,et al.  On Anomaly Ranking and Excess-Mass Curves , 2015, AISTATS.

[269]  Osmar R. Zaïane,et al.  Time series contextual anomaly detection for detecting market manipulation in stock market , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[270]  Sergios Theodoridis,et al.  Machine Learning: A Bayesian and Optimization Perspective , 2015 .

[271]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[272]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.

[273]  Johannes Gehrke,et al.  Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission , 2015, KDD.

[274]  Rose Yu,et al.  GLAD: group anomaly detection in social media analysis , 2014, ACM Trans. Knowl. Discov. Data.

[275]  Julien Cornebise,et al.  Weight Uncertainty in Neural Networks , 2015, ArXiv.

[276]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[277]  Franck Dufrenois,et al.  A One-Class Kernel Fisher Criterion for Outlier Detection , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[278]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[279]  Erik Marchi,et al.  A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional LSTM neural networks , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[280]  Thomas G. Dietterich,et al.  A Meta-Analysis of the Anomaly Detection Problem , 2015 .

[281]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[282]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[283]  Alexei A. Efros,et al.  Unsupervised Visual Representation Learning by Context Prediction , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[284]  Seungjin Choi,et al.  Echo-state conditional variational autoencoder for anomaly detection , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[285]  Yu Cheng,et al.  Deep Structured Energy Based Models for Anomaly Detection , 2016, ICML.

[286]  Yann LeCun,et al.  Deep multi-scale video prediction beyond mean square error , 2015, ICLR.

[287]  Madhu Shukla,et al.  A survey of outlier detection algorithms for data streams , 2016, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).

[288]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[289]  Joachim Denzler,et al.  Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques , 2016 .

[290]  Mohiuddin Ahmed,et al.  A survey of network anomaly detection techniques , 2016, J. Netw. Comput. Appl..

[291]  Paolo Favaro,et al.  Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles , 2016, ECCV.

[292]  Quoc V. Le,et al.  Listen, attend and spell: A neural network for large vocabulary conversational speech recognition , 2015, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[293]  Seiichi Uchida,et al.  A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data , 2016, PloS one.

[294]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[295]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[296]  Anazida Zainal,et al.  Fraud detection system: A survey , 2016, J. Netw. Comput. Appl..

[297]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[298]  Md. Rafiqul Islam,et al.  A survey of anomaly detection techniques in financial domain , 2016, Future Gener. Comput. Syst..

[299]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[300]  Alexei A. Efros,et al.  Colorful Image Colorization , 2016, ECCV.

[301]  Mehryar Mohri,et al.  Learning with Rejection , 2016, ALT.

[302]  Chong Wang,et al.  Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin , 2015, ICML.

[303]  Mehrisadat Makki Alamdari,et al.  On Structural Health Monitoring Using Tensor Analysis and Support Vector Machine with Artificial Negative Data , 2016, CIKM.

[304]  Terrance E. Boult,et al.  Towards Open Set Deep Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[305]  Jos van Hillegersberg,et al.  Outlier detection in healthcare fraud: A case study in the Medicaid dental domain , 2016, Int. J. Account. Inf. Syst..

[306]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[307]  Nhien-An Le-Khac,et al.  Collective Anomaly Detection Based on Long Short-Term Memory Recurrent Neural Networks , 2016, FDSE.

[308]  Venu Govindaraju,et al.  Why Regularized Auto-Encoders learn Sparse Representation? , 2015, ICML.

[309]  John Schulman,et al.  Concrete Problems in AI Safety , 2016, ArXiv.

[310]  Lovekesh Vig,et al.  LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection , 2016, ArXiv.

[311]  Sudipto Guha,et al.  Robust Random Cut Forest Based Anomaly Detection on Streams , 2016, ICML.

[312]  Christopher Leckie,et al.  High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning , 2016, Pattern Recognit..

[313]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[314]  Ali Farhadi,et al.  Unsupervised Deep Embedding for Clustering Analysis , 2015, ICML.

[315]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[316]  James Bailey,et al.  Discovering outlying aspects in large datasets , 2016, Data Mining and Knowledge Discovery.

[317]  Valeria V. Krzhizhanovskaya,et al.  Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection , 2017, J. Comput. Sci..

[318]  Ronald M. Summers,et al.  ChestX-ray: Hospital-Scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases , 2019, Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics.

[319]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[320]  Christopher Ré,et al.  Snorkel: Rapid Training Data Creation with Weak Supervision , 2017, Proc. VLDB Endow..

[321]  Sanjay Chawla,et al.  Robust, Deep and Inductive Anomaly Detection , 2017, ECML/PKDD.

[322]  Alexandre Tkatchenko,et al.  Quantum-chemical insights from deep tensor neural networks , 2016, Nature Communications.

[323]  Bram van Ginneken,et al.  A survey on deep learning in medical image analysis , 2017, Medical Image Anal..

[324]  Randy C. Paffenroth,et al.  Anomaly Detection with Robust Deep Autoencoders , 2017, KDD.

[325]  Ran El-Yaniv,et al.  Selective Classification for Deep Neural Networks , 2017, NIPS.

[326]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[327]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[328]  Zachary C. Lipton,et al.  The Doctor Just Won't Accept That! , 2017, 1711.08037.

[329]  Subutai Ahmad,et al.  Unsupervised real-time anomaly detection for streaming data , 2017, Neurocomputing.

[330]  Gabriel Goh,et al.  Why Momentum Really Works , 2017 .

[331]  Lei Shu,et al.  DOC: Deep Open Classification of Text Documents , 2017, EMNLP.

[332]  Shinichi Nakajima,et al.  Minimizing Trust Leaks for Robust Sybil Detection , 2017, ICML.

[333]  Motoaki Kawanabe,et al.  On robust parameter estimation in brain–computer interfacing , 2017, Journal of neural engineering.

[334]  Charles Richter,et al.  Safe Visual Navigation via Deep Learning and Novelty Detection , 2017, Robotics: Science and Systems.

[335]  Armand Joulin,et al.  Unsupervised Learning by Predicting Noise , 2017, ICML.

[336]  Jinoh Kim,et al.  A survey of deep learning-based network anomaly detection , 2017, Cluster Computing.

[337]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[338]  Zhuoqing Morley Mao,et al.  Categorization of Anomalies in Smart Manufacturing Systems to Support the Selection of Detection Mechanisms , 2017, IEEE Robotics and Automation Letters.

[339]  Yu Cheng,et al.  Unsupervised Sequential Outlier Detection With Deep Architectures , 2017, IEEE Transactions on Image Processing.

[340]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[341]  Xiaojin Zhu,et al.  Semi-Supervised Learning , 2010, Encyclopedia of Machine Learning.

[342]  Tomas Mikolov,et al.  Bag of Tricks for Efficient Text Classification , 2016, EACL.

[343]  Francesco Piazza,et al.  Acoustic novelty detection with adversarial autoencoders , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[344]  Osmar R. Zaïane,et al.  Sentiment Analysis on Twitter to Improve Time Series Contextual Anomaly Detection for Detecting Stock Market Manipulation , 2017, DaWaK.

[345]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[346]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[347]  Charu C. Aggarwal,et al.  Outlier Detection with Autoencoder Ensembles , 2017, SDM.

[348]  Andrew H. Beck,et al.  Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer , 2017, JAMA.

[349]  Kyogu Lee,et al.  Rare Sound Event Detection Using 1D Convolutional Recurrent Neural Networks , 2017, DCASE.

[350]  Aidong Men,et al.  A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data , 2017, Comput. Intell. Neurosci..

[351]  Bo Yang,et al.  Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering , 2016, ICML.

[352]  Byunghan Lee,et al.  Deep learning in bioinformatics , 2016, Briefings Bioinform..

[353]  Seth Flaxman,et al.  European Union Regulations on Algorithmic Decision-Making and a "Right to Explanation" , 2016, AI Mag..

[354]  Siegfried Wahl,et al.  Leveraging uncertainty information from deep neural networks for disease detection , 2016, Scientific Reports.

[355]  Kilian Q. Weinberger,et al.  On Calibration of Modern Neural Networks , 2017, ICML.

[356]  David A. Wagner,et al.  Towards Evaluating the Robustness of Neural Networks , 2016, 2017 IEEE Symposium on Security and Privacy (SP).

[357]  Georg Langs,et al.  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery , 2017, IPMI.

[358]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.

[359]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[360]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[361]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[362]  Oriol Vinyals,et al.  Neural Discrete Representation Learning , 2017, NIPS.

[363]  Alex Kendall,et al.  What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? , 2017, NIPS.

[364]  Mohammad R. Jahanshahi,et al.  Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection , 2018 .

[365]  Olivier Bachem,et al.  Recent Advances in Autoencoder-Based Representation Learning , 2018, ArXiv.

[366]  Toby P. Breckon,et al.  GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training , 2018, ACCV.

[367]  Rajib Rana,et al.  Phonocardiographic Sensing Using Deep Learning for Abnormal Heartbeat Detection , 2018, IEEE Sensors Journal.

[368]  Thomas G. Dietterich,et al.  Open Category Detection with PAC Guarantees , 2018, ICML.

[369]  Mohiuddin Ahmed,et al.  Collective Anomaly Detection Techniques for Network Traffic Analysis , 2018 .

[370]  Cesare Alippi,et al.  Credit Card Fraud Detection: A Realistic Modeling and a Novel Learning Strategy , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[371]  Dan Boneh,et al.  Ensemble Adversarial Training: Attacks and Defenses , 2017, ICLR.

[372]  Konstantinos Kamnitsas,et al.  Unsupervised Lesion Detection in Brain CT using Bayesian Convolutional Autoencoders , 2018 .

[373]  Matthijs Douze,et al.  Deep Clustering for Unsupervised Learning of Visual Features , 2018, ECCV.

[374]  Vatsal Sharan,et al.  Efficient Anomaly Detection via Matrix Sketching , 2018, NeurIPS.

[375]  Zhe Gan,et al.  Adversarial Text Generation via Feature-Mover's Distance , 2018, NeurIPS.

[376]  Marius Kloft,et al.  Image Anomaly Detection with Generative Adversarial Networks , 2018, ECML/PKDD.

[377]  Kibok Lee,et al.  Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples , 2017, ICLR.

[378]  Francesco Cricri,et al.  Clustering and Unsupervised Anomaly Detection with l2 Normalized Deep Auto-Encoder Representations , 2018, 2018 International Joint Conference on Neural Networks (IJCNN).

[379]  Chunhua Wang,et al.  Machine Learning and Deep Learning Methods for Cybersecurity , 2018, IEEE Access.

[380]  Zhi-Hua Zhou,et al.  A brief introduction to weakly supervised learning , 2018 .

[381]  Keun Ho Ryu,et al.  Unsupervised Novelty Detection Using Deep Autoencoders with Density Based Clustering , 2018, Applied Sciences.

[382]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[383]  Cristiano Cervellera,et al.  QuantTree: Histograms for Change Detection in Multivariate Data Streams , 2018, ICML.

[384]  Graham W. Taylor,et al.  Learning Confidence for Out-of-Distribution Detection in Neural Networks , 2018, ArXiv.

[385]  Alexander A. Alemi,et al.  WAIC, but Why? Generative Ensembles for Robust Anomaly Detection , 2018 .

[386]  K-R Müller,et al.  Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning. , 2018, Seminars in cancer biology.

[387]  R. Srikant,et al.  Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks , 2017, ICLR.

[388]  Fabio Roli,et al.  Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning , 2018, CCS.

[389]  Ran El-Yaniv,et al.  Deep Anomaly Detection Using Geometric Transformations , 2018, NeurIPS.

[390]  Phedias Diamandis,et al.  Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction , 2018, BMC Bioinformatics.

[391]  Chuan Sheng Foo,et al.  Adversarially Learned Anomaly Detection , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[392]  Maurizio Filippone,et al.  A comparative evaluation of outlier detection algorithms: Experiments and analyses , 2018, Pattern Recognit..

[393]  Gerhard P. Hancke,et al.  A Survey of Anomaly Detection in Industrial Wireless Sensor Networks with Critical Water System Infrastructure as a Case Study , 2018, Sensors.

[394]  David A. Wagner,et al.  Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples , 2018, ICML.

[395]  Valentino Constantinou,et al.  Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding , 2018, KDD.

[396]  Sanjay Chawla,et al.  Anomaly Detection using One-Class Neural Networks , 2018, ArXiv.

[397]  Sanjay Chawla,et al.  Group Anomaly Detection using Deep Generative Models , 2018, ECML/PKDD.

[398]  Alexander Binder,et al.  Deep One-Class Classification , 2018, ICML.

[399]  Aditya Krishna Menon,et al.  A loss framework for calibrated anomaly detection , 2018, NeurIPS.

[400]  Stanislav Pidhorskyi,et al.  Generative Probabilistic Novelty Detection with Adversarial Autoencoders , 2018, NeurIPS.

[401]  B. Ravi Kiran,et al.  An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos , 2018, J. Imaging.

[402]  Dimitris K. Iakovidis,et al.  Detecting and Locating Gastrointestinal Anomalies Using Deep Learning and Iterative Cluster Unification , 2018, IEEE Transactions on Medical Imaging.

[403]  Jinoh Kim,et al.  An Empirical Evaluation of Deep Learning for Network Anomaly Detection , 2018, 2018 International Conference on Computing, Networking and Communications (ICNC).

[404]  Yu Xue,et al.  Generative adversarial network based telecom fraud detection at the receiving bank , 2018, Neural Networks.

[405]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[406]  Tarun Gupta,et al.  A research study on unsupervised machine learning algorithms for early fault detection in predictive maintenance , 2018, 2018 5th International Conference on Industrial Engineering and Applications (ICIEA).

[407]  Mahmood Fathy,et al.  Adversarially Learned One-Class Classifier for Novelty Detection , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[408]  Ender Konukoglu,et al.  Unsupervised Detection of Lesions in Brain MRI using constrained adversarial auto-encoders , 2018, ArXiv.

[409]  Thomas G. Dietterich,et al.  Feedback-Guided Anomaly Discovery via Online Optimization , 2018, KDD.

[410]  Alexander A. Alemi,et al.  Fixing a Broken ELBO , 2017, ICML.

[411]  Maya R. Gupta,et al.  To Trust Or Not To Trust A Classifier , 2018, NeurIPS.

[412]  Leman Akoglu,et al.  Explaining anomalies in groups with characterizing subspace rules , 2017, Data Mining and Knowledge Discovery.

[413]  Hong Zhang,et al.  Facial expression recognition via learning deep sparse autoencoders , 2018, Neurocomputing.

[414]  Wojciech Samek,et al.  Methods for interpreting and understanding deep neural networks , 2017, Digit. Signal Process..

[415]  Nikos Komodakis,et al.  Unsupervised Representation Learning by Predicting Image Rotations , 2018, ICLR.

[416]  Chuan Sheng Foo,et al.  Efficient GAN-Based Anomaly Detection , 2018, ArXiv.

[417]  Shinichi Nakajima,et al.  Support Vector Data Descriptions and $k$ -Means Clustering: One Class? , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[418]  Charles C. Kemp,et al.  A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder , 2017, IEEE Robotics and Automation Letters.

[419]  Yang Feng,et al.  Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications , 2018, WWW.

[420]  Kibok Lee,et al.  A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks , 2018, NeurIPS.

[421]  Terrance E. Boult,et al.  Reducing Network Agnostophobia , 2018, NeurIPS.

[422]  Bo Zong,et al.  Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection , 2018, ICLR.

[423]  Stephan Günnemann,et al.  NetGAN: Generating Graphs via Random Walks , 2018, ICML.

[424]  Roman Vershynin,et al.  High-Dimensional Probability , 2018 .

[425]  Qiang Liu,et al.  SU-IDS: A Semi-supervised and Unsupervised Framework for Network Intrusion Detection , 2018, ICCCS.

[426]  Alexandre Lacoste,et al.  Neural Autoregressive Flows , 2018, ICML.

[427]  Joseph Keshet,et al.  Out-of-Distribution Detection using Multiple Semantic Label Representations , 2018, NeurIPS.

[428]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[429]  Vishal M. Patel,et al.  One-Class Convolutional Neural Network , 2019, IEEE Signal Processing Letters.

[430]  Emanuele Ghelfi,et al.  A Survey on GANs for Anomaly Detection , 2019, ArXiv.

[431]  Wojciech Samek,et al.  Explainable AI: Interpreting, Explaining and Visualizing Deep Learning , 2019, Explainable AI.

[432]  Christian S. Jensen,et al.  Outlier Detection for Time Series with Recurrent Autoencoder Ensembles , 2019, IJCAI.

[433]  Deep Variational Semi-Supervised Novelty Detection , 2019, ArXiv.

[434]  Jesse Davis,et al.  Fast Distance-Based Anomaly Detection in Images Using an Inception-Like Autoencoder , 2019, DS.

[435]  Nassir Navab,et al.  Fusing Unsupervised and Supervised Deep Learning for White Matter Lesion Segmentation , 2019, MIDL.

[436]  Fuxin Li,et al.  Visualizing Deep Networks by Optimizing with Integrated Gradients , 2019, CVPR Workshops.

[437]  Sebastian Nowozin,et al.  Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift , 2019, NeurIPS.

[438]  Robert X. Gao,et al.  Deep learning and its applications to machine health monitoring , 2019, Mechanical Systems and Signal Processing.

[439]  Aleksander Madry,et al.  Adversarial Examples Are Not Bugs, They Are Features , 2019, NeurIPS.

[440]  F. Arcadu,et al.  Deep learning algorithm predicts diabetic retinopathy progression in individual patients , 2019, npj Digital Medicine.

[441]  Lei Shi,et al.  MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks , 2019, ICANN.

[442]  Hongzhi Wang,et al.  Progress in Outlier Detection Techniques: A Survey , 2019, IEEE Access.

[443]  Dawn Xiaodong Song,et al.  Lifelong Anomaly Detection Through Unlearning , 2019, CCS.

[444]  Diederik P. Kingma,et al.  An Introduction to Variational Autoencoders , 2019, Found. Trends Mach. Learn..

[445]  Kristof T. Schütt,et al.  Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions , 2019, Nature Communications.

[446]  Aruna Tiwari,et al.  Localized Multiple Kernel Learning for Anomaly Detection: One-class Classification , 2018, Knowl. Based Syst..

[447]  Peng Wei,et al.  A PCB Dataset for Defects Detection and Classification , 2019, ArXiv.

[448]  Carsten Steger,et al.  MVTec AD — A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[449]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[450]  Michael S. Brown,et al.  Noise Flow: Noise Modeling With Conditional Normalizing Flows , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[451]  Andre Esteva,et al.  A guide to deep learning in healthcare , 2019, Nature Medicine.

[452]  G. Corrado,et al.  End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography , 2019, Nature Medicine.

[453]  Thomas Brox,et al.  Anomaly Detection With Multiple-Hypotheses Predictions , 2018, ICML.

[454]  Thomas G. Dietterich,et al.  Sequential Feature Explanations for Anomaly Detection , 2019, ACM Trans. Knowl. Discov. Data.

[455]  Alexander Binder,et al.  Unmasking Clever Hans predictors and assessing what machines really learn , 2019, Nature Communications.

[456]  Ramesh Nallapati,et al.  OCGAN: One-Class Novelty Detection Using GANs With Constrained Latent Representations , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[457]  Ender Konukoglu,et al.  Unsupervised Lesion Detection via Image Restoration with a Normative Prior , 2018, MIDL.

[458]  Thomas G. Dietterich,et al.  Benchmarking Neural Network Robustness to Common Corruptions and Perturbations , 2018, ICLR.

[459]  Renjie Liao,et al.  Efficient Graph Generation with Graph Recurrent Attention Networks , 2019, NeurIPS.

[460]  Simone Calderara,et al.  Latent Space Autoregression for Novelty Detection , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[461]  Yee Whye Teh,et al.  Do Deep Generative Models Know What They Don't Know? , 2018, ICLR.

[462]  Michael Kampffmeyer,et al.  Deep Divergence-Based Approach to Clustering , 2019, Neural Networks.

[463]  Ali Razavi,et al.  Generating Diverse High-Fidelity Images with VQ-VAE-2 , 2019, NeurIPS.

[464]  Michael I. Jordan,et al.  Theoretically Principled Trade-off between Robustness and Accuracy , 2019, ICML.

[465]  Thomas G. Dietterich,et al.  Deep Anomaly Detection with Outlier Exposure , 2018, ICLR.

[466]  Justin Gilmer,et al.  MNIST-C: A Robustness Benchmark for Computer Vision , 2019, ArXiv.

[467]  Vishal M. Patel,et al.  Learning Deep Features for One-Class Classification , 2018, IEEE Transactions on Image Processing.

[468]  Klaus-Robert Müller,et al.  Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases , 2019, Science Translational Medicine.

[469]  Haoyu Wang,et al.  Fast Incremental SVDD Learning Algorithm with the Gaussian Kernel , 2017, AAAI.

[470]  Elyas Sabeti,et al.  Data Discovery and Anomaly Detection Using Atypicality: Theory , 2017, IEEE Transactions on Information Theory.

[471]  Marc Niethammer,et al.  Connectivity-Optimized Representation Learning via Persistent Homology , 2019, ICML.

[472]  Jasper Snoek,et al.  Likelihood Ratios for Out-of-Distribution Detection , 2019, NeurIPS.

[473]  Marius Kloft,et al.  Self-Attentive, Multi-Context One-Class Classification for Unsupervised Anomaly Detection on Text , 2019, ACL.

[474]  Yue Wu,et al.  DeepDetect: A Cascaded Region-Based Densely Connected Network for Seismic Event Detection , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[475]  Vishal M. Patel,et al.  C2AE: Class Conditioned Auto-Encoder for Open-Set Recognition , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[476]  Ronan Collobert,et al.  wav2vec: Unsupervised Pre-training for Speech Recognition , 2019, INTERSPEECH.

[477]  Weizhong Yan,et al.  On Accurate and Reliable Anomaly Detection for Gas Turbine Combustors: A Deep Learning Approach , 2015, Annual Conference of the PHM Society.

[478]  Hao Wu,et al.  Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning , 2018, Science.

[479]  Maria Spiropulu,et al.  Variational autoencoders for new physics mining at the Large Hadron Collider , 2018, Journal of High Energy Physics.

[480]  Chuan-Sheng Foo,et al.  Towards Practical Unsupervised Anomaly Detection on Retinal Images , 2019, DART/MIL3ID@MICCAI.

[481]  Anoop Cherian,et al.  GODS: Generalized One-Class Discriminative Subspaces for Anomaly Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[482]  Bernhard Schölkopf,et al.  Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations , 2018, ICML.

[483]  Klaus-Robert Müller,et al.  Explanations can be manipulated and geometry is to blame , 2019, NeurIPS.

[484]  Raghavendra Chalapathy University of Sydney,et al.  Deep Learning for Anomaly Detection: A Survey , 2019, ArXiv.

[485]  Leroy Cronin,et al.  How to explore chemical space using algorithms and automation , 2019, Nature Reviews Chemistry.

[486]  Kimin Lee,et al.  Using Pre-Training Can Improve Model Robustness and Uncertainty , 2019, ICML.

[487]  Klaus-Robert Müller,et al.  From Clustering to Cluster Explanations via Neural Networks , 2019, IEEE transactions on neural networks and learning systems.

[488]  Aleksander Madry,et al.  On Evaluating Adversarial Robustness , 2019, ArXiv.

[489]  Yuma Koizumi,et al.  Unsupervised Detection of Anomalous Sound Based on Deep Learning and the Neyman–Pearson Lemma , 2018, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[490]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[491]  Alessandro Rinaldo,et al.  Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection , 2019, NeurIPS.

[492]  Nontawat Charoenphakdee,et al.  On the Calibration of Multiclass Classification with Rejection , 2019, NeurIPS.

[493]  Eric T. Nalisnick,et al.  Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality , 2019 .

[494]  Svetha Venkatesh,et al.  Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised Anomaly Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[495]  Yaoliang Yu,et al.  Multivariate Triangular Quantile Maps for Novelty Detection , 2019, NeurIPS.

[496]  Luca Benini,et al.  Anomaly Detection using Autoencoders in High Performance Computing Systems , 2018, DDC@AI*IA.

[497]  Huawen Liu,et al.  Recent Progress of Anomaly Detection , 2019, Complex..

[498]  Dawn Song,et al.  Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty , 2019, NeurIPS.

[499]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[500]  Jianping Yin,et al.  Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network , 2019, NeurIPS.

[501]  Cewu Lu,et al.  Inverse-Transform AutoEncoder for Anomaly Detection , 2019, ArXiv.

[502]  Ron J. Weiss,et al.  Unsupervised Speech Representation Learning Using WaveNet Autoencoders , 2019, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[503]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[504]  Yoshua Bengio,et al.  Learning deep representations by mutual information estimation and maximization , 2018, ICLR.

[505]  Smita Krishnaswamy,et al.  A Lipschitz-constrained anomaly discriminator framework , 2019, ArXiv.

[506]  Richard Socher,et al.  Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems , 2019, ACL.

[507]  Anton van den Hengel,et al.  Deep Anomaly Detection with Deviation Networks , 2019, KDD.

[508]  Georg Langs,et al.  f‐AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks , 2019, Medical Image Anal..

[509]  Yedid Hoshen,et al.  Classification-Based Anomaly Detection for General Data , 2020, ICLR.

[510]  Tonio Ball,et al.  Understanding Anomaly Detection with Deep Invertible Networks through Hierarchies of Distributions and Features , 2020, NeurIPS.

[511]  Georg Langs,et al.  Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCT , 2019, IEEE Transactions on Medical Imaging.

[512]  V. Gómez,et al.  Input complexity and out-of-distribution detection with likelihood-based generative models , 2019, ICLR.

[513]  Esteban Reyes,et al.  Transformation Based Deep Anomaly Detection in Astronomical Images , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[514]  Quoc V. Le,et al.  Self-Training With Noisy Student Improves ImageNet Classification , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[515]  Klaus-Robert Müller,et al.  Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models , 2018, Pattern Recognit..

[516]  Sae-Young Chung,et al.  Novelty Detection Via Blurring , 2020, ICLR.

[517]  Weiying Xie,et al.  Discriminative Reconstruction Constrained Generative Adversarial Network for Hyperspectral Anomaly Detection , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[518]  Matthias Hein,et al.  Towards neural networks that provably know when they don't know , 2020, ICLR.

[519]  Guy Wolf,et al.  Fixing Bias in Reconstruction-based Anomaly Detection with Lipschitz Discriminators , 2019, 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP).

[520]  Geoffrey E. Hinton,et al.  A Simple Framework for Contrastive Learning of Visual Representations , 2020, ICML.

[521]  Ben Poole,et al.  Weakly-Supervised Disentanglement Without Compromises , 2020, ICML.

[522]  Jing Liu,et al.  A Deep One-Class Neural Network for Anomalous Event Detection in Complex Scenes , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[523]  Alexander Binder,et al.  Simple and Effective Prevention of Mode Collapse in Deep One-Class Classification , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[524]  Yuki M. Asano,et al.  A critical analysis of self-supervision, or what we can learn from a single image , 2019, ICLR.

[525]  Alexander Binder,et al.  Deep Semi-Supervised Anomaly Detection , 2019, ICLR.

[526]  Aaron C. Courville,et al.  Detecting semantic anomalies , 2019, AAAI.

[527]  Christopher Leckie,et al.  Deep Multi-sphere Support Vector Data Description , 2020, SDM.

[528]  Ang Li,et al.  Hybrid Models for Open Set Recognition , 2020, ECCV.

[529]  Rethinking Assumptions in Deep Anomaly Detection , 2020, ArXiv.

[530]  Heinrich Schulz,et al.  Anomaly Detection with Deep Perceptual Autoencoders , 2020, ArXiv.

[531]  B. Nachman,et al.  Anomaly detection with density estimation , 2020, Physical Review D.

[532]  Mark Chen,et al.  Language Models are Few-Shot Learners , 2020, NeurIPS.

[533]  Shinichi Nakajima,et al.  How Much Can I Trust You? - Quantifying Uncertainties in Explaining Neural Networks , 2020, ArXiv.

[534]  Alexander Lavin,et al.  Manifolds for Unsupervised Visual Anomaly Detection , 2020, ArXiv.

[535]  E. O. Kiktenko,et al.  Revealing quantum chaos with machine learning , 2019, Physical Review B.

[536]  Ghassan AlRegib,et al.  Backpropagated Gradient Representations for Anomaly Detection , 2020, ECCV.

[537]  Yuan-Hai Shao,et al.  Principal Component Analysis Based on T𝓁1-norm Maximization , 2020, ArXiv.

[538]  Panos M. Pardalos,et al.  Interpreting rate-distortion of variational autoencoder and using model uncertainty for anomaly detection , 2020, Annals of Mathematics and Artificial Intelligence.

[539]  Peter M. Full,et al.  Medical Out-of-Distribution Analysis Challenge , 2020 .

[540]  Odej Kao,et al.  Self-Attentive Classification-Based Anomaly Detection in Unstructured Logs , 2020, 2020 IEEE International Conference on Data Mining (ICDM).

[541]  Thomas G. Dietterich,et al.  Discovering Anomalies by Incorporating Feedback from an Expert , 2020, ACM Trans. Knowl. Discov. Data.

[542]  John Sipple,et al.  Interpretable, Multidimensional, Multimodal Anomaly Detection with Negative Sampling for Detection of Device Failure , 2020, ICML.

[543]  Pushmeet Kohli,et al.  Contrastive Training for Improved Out-of-Distribution Detection , 2020, ArXiv.

[544]  Yongsub Lim,et al.  RaPP: Novelty Detection with Reconstruction along Projection Pathway , 2020, ICLR.

[545]  Mohammad Norouzi,et al.  Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One , 2019, ICLR.

[546]  Wojciech Samek,et al.  Toward Interpretable Machine Learning: Transparent Deep Neural Networks and Beyond , 2020, ArXiv.

[547]  Harsha Vardhan Simhadri,et al.  DROCC: Deep Robust One-Class Classification , 2020, ICML.

[548]  Lorenz Wellhausen,et al.  Safe Robot Navigation Via Multi-Modal Anomaly Detection , 2020, IEEE Robotics and Automation Letters.

[549]  Aaron C. Courville,et al.  Out-of-Distribution Generalization via Risk Extrapolation (REx) , 2020, International Conference on Machine Learning.

[550]  Sameer Antani,et al.  Ensemble Deep Learning for Cervix Image Selection toward Improving Reliability in Automated Cervical Precancer Screening , 2020, Diagnostics.

[551]  Andrew Gordon Wilson,et al.  Why Normalizing Flows Fail to Detect Out-of-Distribution Data , 2020, NeurIPS.

[552]  Klaus-Robert Muller,et al.  The Clever Hans Effect in Anomaly Detection , 2020, ArXiv.

[553]  Jinwoo Shin,et al.  CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances , 2020, NeurIPS.

[554]  Yedid Hoshen,et al.  Deep Nearest Neighbor Anomaly Detection , 2020, ArXiv.

[555]  O. Papaspiliopoulos High-Dimensional Probability: An Introduction with Applications in Data Science , 2020 .

[556]  Lifeng Shen,et al.  Timeseries Anomaly Detection using Temporal Hierarchical One-Class Network , 2020, NeurIPS.

[557]  Weakly Supervised Disentanglement with Guarantees , 2019, ICLR.

[558]  Mahmood Fathy,et al.  Deep End-to-End One-Class Classifier , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[559]  Marius Kloft,et al.  Explainable Deep One-Class Classification , 2020, ICLR.

[560]  Klemens Böhm,et al.  Generating Artificial Outliers in the Absence of Genuine Ones — A Survey , 2020, ACM Trans. Knowl. Discov. Data.

[561]  Ivan Kobyzev,et al.  Normalizing Flows: An Introduction and Review of Current Methods , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[562]  Aaron C. Courville,et al.  Out-of-Distribution Generalization via Risk Extrapolation (REx) , 2020, ICML.

[563]  Steven Euijong Whang,et al.  A Survey on Data Collection for Machine Learning: A Big Data - AI Integration Perspective , 2018, IEEE Transactions on Knowledge and Data Engineering.

[564]  Dawn Song,et al.  Natural Adversarial Examples , 2019, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[565]  Eric Nalisnick,et al.  Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..

[566]  Xiaofeng Liu,et al.  Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models , 2019, AAAI.

[567]  Cewu Lu,et al.  Attribute Restoration Framework for Anomaly Detection , 2019, IEEE Transactions on Multimedia.