Multiple Novel Prostate Cancer Predisposition Loci Confirmed by an International Study: The PRACTICAL Consortium

A recent genome-wide association study found that genetic variants on chromosomes 3, 6, 7, 10, 11, 19 and X were associated with prostate cancer risk. We evaluated the most significant single-nucleotide polymorphisms (SNP) in these loci using a worldwide consortium of 13 groups (PRACTICAL). Blood DNA from 7,370 prostate cancer cases and 5,742 male controls was analyzed by genotyping assays. Odds ratios (OR) associated with each genotype were estimated using unconditional logistic regression. Six of the seven SNPs showed clear evidence of association with prostate cancer (P = 0.0007-P = 10−17). For each of these six SNPs, the estimated per-allele OR was similar to those previously reported and ranged from 1.12 to 1.29. One SNP on 3p12 (rs2660753) showed a weaker association than previously reported [per-allele OR, 1.08 (95% confidence interval, 1.00-1.16; P = 0.06) versus 1.18 (95% confidence interval, 1.06-1.31)]. The combined risks associated with each pair of SNPs were consistent with a multiplicative risk model. Under this model, and in combination with previously reported SNPs on 8q and 17q, these loci explain 16% of the familial risk of the disease, and men in the top 10% of the risk distribution have a 2.1-fold increased risk relative to general population rates. This study provides strong confirmation of these susceptibility loci in multiple populations and shows that they make an important contribution to prostate cancer risk prediction. (Cancer Epidemiol Biomarkers Prev 2008;17(8):2052–61)

Elaine A. Ostrander | Douglas F. Easton | Daniel A. Leongamornlert | Shannon K. McDonnell | Angela Cox | Joseph S. Koopmeiners | Dallas R. English | John Hopper | Nancy Hamel | Gianluca Severi | Janet L. Stanford | Christiane Maier | Johanna Schleutker | William D. Foulkes | Sue A. Ingles | Daniel Schaid | Artitaya Lophatananon | D. Schaid | D. English | R. Eeles | Z. Kote-Jarai | G. Giles | M. Guy | G. Severi | J. Hopper | J. Schleutker | F. Hamdy | D. Neal | J. Stanford | E. Ostrander | S. Ingles | E. John | S. Thibodeau | A. Spurdle | C. Maier | T. Dörk | P. Chappuis | P. Hutter | W. Foulkes | D. Leongamornlert | M. Tymrakiewicz | S. Edwards | M. Southey | A. Lophatananon | Jo-Fen Liu | Tiina Wahlfors | T. Tammela | A. Cox | J. Koopmeiners | D. Karyadi | M. Stern | R. Corral | A. Joshi | S. McDonnell | J. Aitken | R. Gardiner | M. Kedda | A. Meyer | D. Easton | P. Schürmann | K. Muir | R. Kuefer | C. A. Salinas | S. Steginga | N. Hamel | B. Johanneson | A. A. Al Olama | T. O’Mara | David Neal | Esther M. John | Pierre Hutter | Rosalind A. Eeles | Kenneth Muir | Ali Amin Al Olama | Zsofia Kote-Jarai | Michelle Guy | Tiina Wahlfors | Amanda Spurdle | Bo Johanneson | Melissa Southey | Graham Giles | Rainer Kuefer | Joanne Aitken | Malgorzata Tymrakiewicz | Amit D. Joshi | Mariana C. Stern | Pierre O. Chappuis | Andreas Meyer | Stephen Thibodeau | Thilo Dörk | Walter Vogel | Mary-Anne Kedda | Suzanne Steginga | Claudia A. Salinas | Danielle M. Karyadi | Teuvo L. Tammela | Roman Corral | Peter Schürmann | Jo-fen Liu | Tracy O'Mara | R.A. (Frank) Gardiner | Stephen M. Edwards | W. Vogel | Jenny Donovan | R. A. F. Gardiner | Jenny L. Donovan | R. A. Gardiner | Román Corral | J. Donovan

[1]  Kevin M. Bradley,et al.  Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer , 2008, Nature Genetics.

[2]  S. Ingles,et al.  Sun exposure, vitamin D receptor gene polymorphisms, and risk of advanced prostate cancer. , 2005, Cancer research.

[3]  A. Whittemore,et al.  Multiple regions within 8q24 independently affect risk for prostate cancer , 2007, Nature Genetics.

[4]  Ali Amin Al Olama,et al.  Multiple newly identified loci associated with prostate cancer susceptibility , 2008, Nature Genetics.

[5]  A. Whittemore,et al.  Where are the prostate cancer genes?—A summary of eight genome wide searches , 2003, The Prostate.

[6]  J. R. Reeves,et al.  Prognostic Value of Prostate Secretory Protein of 94 Amino Acids and its Binding Protein after Radical Prostatectomy , 2006, Clinical Cancer Research.

[7]  D. Clayton,et al.  An R Package for Analysis of Whole-Genome Association Studies , 2007, Human Heredity.

[8]  J. Cerhan,et al.  Evaluation of Genetic Variations in the Androgen and Estrogen Metabolic Pathways as Risk Factors for Sporadic and Familial Prostate Cancer , 2007, Cancer Epidemiology Biomarkers & Prevention.

[9]  C. P. Morris,et al.  PSA/KLK3 AREI promoter polymorphism alters androgen receptor binding and is associated with prostate cancer susceptibility. , 2006, Carcinogenesis.

[10]  A. Gylfason,et al.  A common variant associated with prostate cancer in European and African populations , 2006, Nature Genetics.

[11]  D Gillatt,et al.  Prostate Testing for Cancer and Treatment (ProtecT) feasibility study. , 2003, Health technology assessment.

[12]  R. Eeles,et al.  Unravelling the genetics of prostate cancer , 2004, American journal of medical genetics. Part C, Seminars in medical genetics.

[13]  N. Risch,et al.  Segregation analysis of idiopathic torsion dystonia in Ashkenazi Jews suggests autosomal dominant inheritance. , 1990, American journal of human genetics.

[14]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[15]  C. Maier,et al.  Germline mutations of the MSR1 gene in prostate cancer families from Germany , 2006, Human mutation.

[16]  Lester L. Peters,et al.  Genome-wide association study identifies novel breast cancer susceptibility loci , 2007, Nature.

[17]  J. Schleutker,et al.  KLF6 IVS1 -27G>A variant and the risk of prostate cancer in Finland. , 2007, European urology.

[18]  T. Beaty,et al.  Mendelian inheritance of familial prostate cancer. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[19]  W. Willett,et al.  Multiple loci identified in a genome-wide association study of prostate cancer , 2008, Nature Genetics.