Tuning resonances on crescent-shaped noble-metal nanoparticles

The geometry of crescent-shaped noble-metal nanoparticles is systematically varied in terms of shape and size. The resulting changes in the plasmonic resonances of these structures are investigated by extinction spectroscopy revealing a rich polarization-dependent response in the near-infrared region of the electromagnetic spectrum. A first approach towards the understanding of this behaviour, in analogy to previous models on confined modes in nanometric metal slabs, is presented and discussed. Variations in several geometrical parameters lead to changes in the optical response that can be understood within this model. Qualitative changes in the response are seen at the transition of the structures from an open 'crescent' to a fully connected ring, pointing to a high field localization between the two tips of the structure.

[1]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[2]  M. Quinten,et al.  Scattering and absorption by spherical multilayer particles , 1994 .

[3]  Jennifer S. Shumaker-Parry,et al.  Fabrication of Crescent‐Shaped Optical Antennas , 2005 .

[4]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[5]  Bernhard Lamprecht,et al.  Optical properties of Ag and Au nanowire gratings , 2001 .

[6]  Harald Ditlbacher,et al.  Plasmon dispersion relation of Au and Ag nanowires , 2003 .

[7]  Luke P. Lee,et al.  Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. , 2005, Nano letters.

[8]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[9]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[10]  P. K. Aravind,et al.  The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy , 1983 .

[11]  Michael Giersig,et al.  Shadow Nanosphere Lithography: Simulation and Experiment , 2004 .

[12]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[13]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[14]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[15]  G. Boreman,et al.  Modeling parameters for the spectral behavior of infrared frequency-selective surfaces. , 2001, Applied optics.

[16]  J. Baumberg,et al.  Optical properties of nanostructured metal films. , 2004, Faraday discussions.

[17]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[18]  P. Berini Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures , 2000 .

[19]  Michael Giersig,et al.  Shadow Nanosphere Lithography: Simulation and Experiment , 2004 .

[20]  Arto V. Nurmikko,et al.  Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime , 2004 .

[21]  Girard,et al.  Molecular lifetime changes induced by nanometer scale optical fields. , 1995, Physical review letters.

[22]  Bernhard Lamprecht,et al.  Design of multipolar plasmon excitations in silver nanoparticles , 2000 .

[23]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[24]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .

[25]  George C Schatz,et al.  Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. , 2005, The journal of physical chemistry. B.

[26]  David R. Smith,et al.  Plasmon resonances of silver nanowires with a nonregular cross section , 2001 .

[27]  U. Fischer,et al.  Submicroscopic pattern replication with visible light , 1981 .

[28]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[29]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.