Dopamine’s Actions in Primate Prefrontal Cortex: Challenges for Treating Cognitive Disorders

The prefrontal cortex (PFC) elaborates and differentiates in primates, and there is a corresponding elaboration in cortical dopamine (DA). DA cells that fire to both aversive and rewarding stimuli likely project to the dorsolateral PFC (dlPFC), signaling a salient event. Since 1979, we have known that DA has an essential influence on dlPFC working memory functions. DA has differing effects via D1 (D1R) versus D2 receptor (D2R) families. D1R are concentrated on dendritic spines, and D1/5R stimulation produces an inverted U-shaped dose response on visuospatial working memory performance and Delay cell firing, the neurons that generate representations of visual space. Optimal levels of D1R stimulation gate out “noise,” whereas higher levels, e.g., during stress, suppress Delay cell firing. These effects likely involve hyperpolarization-activated cyclic nucleotide-gated channel opening, activation of GABA interneurons, and reduced glutamate release. Dysregulation of D1R has been related to cognitive deficits in schizophrenia, and there is a need for new, lower-affinity D1R agonists that may better mimic endogenous DA to enhance mental representations and improve cognition. In contrast to D1R, D2R are primarily localized on layer V pyramidal cell dendrites, and D2/3R stimulation speeds and magnifies the firing of Response cells, including Response Feedback cells. Altered firing of Feedback neurons may relate to positive symptoms in schizophrenia. Emerging research suggests that DA may have similar effects in the ventrolateral PFC and frontal eye fields. Research on the orbital PFC in monkeys is just beginning and could be a key area for future discoveries.

[1]  Daeyeol Lee,et al.  Stress Impairs Prefrontal Cortical Function via D1 Dopamine Receptor Interactions With Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , 2015, Biological Psychiatry.

[2]  E. Miller,et al.  Neural Substrates of Dopamine D2 Receptor Modulated Executive Functions in the Monkey Prefrontal Cortex. , 2015, Cerebral cortex.

[3]  Jared X. Van Snellenberg,et al.  Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. , 2015, JAMA psychiatry.

[4]  Philip D. Harvey,et al.  Effects of the D1 Dopamine Receptor Agonist Dihydrexidine (DAR-0100A) on Working Memory in Schizotypal Personality Disorder , 2015, Neuropsychopharmacology.

[5]  S. Haber The place of dopamine in the cortico-basal ganglia circuit , 2014, Neuroscience.

[6]  T. J. Moore,et al.  Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. , 2014, JAMA internal medicine.

[7]  Roger A. Barker,et al.  Targeting impulsivity in Parkinson’s disease using atomoxetine , 2014, Brain : a journal of neurology.

[8]  K. Hikosaka,et al.  Higher dopamine release induced by less rather than more preferred reward during a working memory task in the primate prefrontal cortex , 2014, Behavioural Brain Research.

[9]  Young T. Hong,et al.  Orbitofrontal Dopamine Depletion Upregulates Caudate Dopamine and Alters Behavior via Changes in Reinforcement Sensitivity , 2014, The Journal of Neuroscience.

[10]  Roshan Cools,et al.  Cognitive deficits in Parkinson's disease: A cognitive neuroscience perspective , 2014, Movement disorders : official journal of the Movement Disorder Society.

[11]  Zhian Hu,et al.  Neurophysiology of HCN channels: From cellular functions to multiple regulations , 2014, Progress in Neurobiology.

[12]  Alain Dagher,et al.  Stress‐induced dopamine release in human medial prefrontal cortex—18F‐Fallypride/PET study in healthy volunteers , 2013, Synapse.

[13]  Christine M Constantinople,et al.  Prefrontal Cortex HCN1 Channels Enable Intrinsic Persistent Neural Firing and Executive Memory Function , 2013, The Journal of Neuroscience.

[14]  A. Arnsten The Neurobiology of Thought: The Groundbreaking Discoveries of Patricia Goldman-Rakic 1937–2003 , 2013, Cerebral cortex.

[15]  A. Arnsten,et al.  Constellation of HCN channels and cAMP regulating proteins in dendritic spines of the primate prefrontal cortex: potential substrate for working memory deficits in schizophrenia. , 2013, Cerebral cortex.

[16]  A. Arnsten,et al.  Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex , 2013, Proceedings of the National Academy of Sciences.

[17]  C. Kieling,et al.  Genetics of attention-deficit/hyperactivity disorder: current findings and future directions , 2013, Expert review of neurotherapeutics.

[18]  J. Morrison,et al.  NMDA Receptors Subserve Persistent Neuronal Firing during Working Memory in Dorsolateral Prefrontal Cortex , 2013, Neuron.

[19]  Tirin Moore,et al.  Dissociable dopaminergic control of saccadic target selection and its implications for reward modulation , 2013, Proceedings of the National Academy of Sciences.

[20]  B. Giros,et al.  In Vivo Occupancy of Dopamine D3 Receptors by Antagonists Produces Neurochemical and Behavioral Effects of Potential Relevance to Attention-Deficit–Hyperactivity Disorder , 2013, The Journal of Pharmacology and Experimental Therapeutics.

[21]  C. Berridge,et al.  A selective dopamine reuptake inhibitor improves prefrontal cortex-dependent cognitive function: Potential relevance to attention deficit hyperactivity disorder , 2013, Neuropharmacology.

[22]  N. Narayanan,et al.  Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease , 2013, Reviews in the neurosciences.

[23]  G. Gross,et al.  Dopamine D3 receptor antagonism—still a therapeutic option for the treatment of schizophrenia , 2012, Naunyn-Schmiedeberg's Archives of Pharmacology.

[24]  A. Arnsten,et al.  Neuromodulation of Thought: Flexibilities and Vulnerabilities in Prefrontal Cortical Network Synapses , 2012, Neuron.

[25]  E. Caylak Biochemical and genetic analyses of childhood attention deficit/hyperactivity disorder , 2012, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[26]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[27]  K. Borgmann-Winter,et al.  Attention-Deficit/Hyperactivity Disorder Genomics: Update for Clinicians , 2012, Current Psychiatry Reports.

[28]  E. Miller,et al.  The Role of Prefrontal Dopamine D1 Receptors in the Neural Mechanisms of Associative Learning , 2012, Neuron.

[29]  R. Narendran,et al.  Increased prefrontal cortical D1 receptors in drug naïve patients with schizophrenia: a PET study with [11C]NNC112 , 2012, Journal of psychopharmacology.

[30]  B. Franke,et al.  The effect of moderate acute psychological stress on working memory-related neural activity is modulated by a genetic variation in catecholaminergic function in humans , 2012, Front. Integr. Neurosci..

[31]  M. Laubach,et al.  Lost in Transition: Aging-Related Changes in Executive Control by the Medial Prefrontal Cortex , 2012, The Journal of Neuroscience.

[32]  Jens C. Pruessner,et al.  Psychosocial stress is associated with in vivo dopamine release in human ventromedial prefrontal cortex: A positron emission tomography study using [18F]fallypride , 2011, NeuroImage.

[33]  Simon Hong,et al.  Negative Reward Signals from the Lateral Habenula to Dopamine Neurons Are Mediated by Rostromedial Tegmental Nucleus in Primates , 2011, The Journal of Neuroscience.

[34]  C. Berridge,et al.  Psychostimulants as Cognitive Enhancers: The Prefrontal Cortex, Catecholamines, and Attention-Deficit/Hyperactivity Disorder , 2011, Biological Psychiatry.

[35]  M. D’Esposito,et al.  Inverted-U–Shaped Dopamine Actions on Human Working Memory and Cognitive Control , 2011, Biological Psychiatry.

[36]  S. Lammel,et al.  Projection-Specific Modulation of Dopamine Neuron Synapses by Aversive and Rewarding Stimuli , 2011, Neuron.

[37]  Robert E. Hampson,et al.  Neural Activity in Frontal Cortical Cell Layers: Evidence for Columnar Sensorimotor Processing , 2011, Journal of Cognitive Neuroscience.

[38]  M. D’Esposito,et al.  Estrogen Shapes Dopamine-Dependent Cognitive Processes: Implications for Women's Health , 2011, The Journal of Neuroscience.

[39]  T. Moore,et al.  CONTROL OF VISUAL CORTICAL SIGNALS BY PREFRONTAL DOPAMINE , 2011, Nature.

[40]  P. Goldman-Rakic Circuitry of Primate Prefrontal Cortex and Regulation of Behavior by Representational Memory , 2011 .

[41]  Ethan S. Bromberg-Martin,et al.  Dopamine in Motivational Control: Rewarding, Aversive, and Alerting , 2010, Neuron.

[42]  J. Schneider,et al.  The dopamine D3 receptor antagonist, S33138, counters cognitive impairment in a range of rodent and primate procedures. , 2010, The international journal of neuropsychopharmacology.

[43]  Wenjun Gao,et al.  Dopamine D1 Receptor-mediated Enhancement of Nmda Receptor Trafficking Requires Rapid Pkc- Dependent Synaptic Insertion in the Prefrontal Neurons Recommended Citation , 2022 .

[44]  S. Haber,et al.  Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. , 2010, Archives of general psychiatry.

[45]  A. Arnsten,et al.  Dopamine's Influence on Prefrontal Cortical Cognition: Actions and Circuits in Behaving Primates , 2010 .

[46]  Z. Khan,et al.  Dopamine D1 and D5 receptors are localized to discrete populations of interneurons in primate prefrontal cortex. , 2009, Cerebral cortex.

[47]  S. Kapur,et al.  Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. , 2009, Current pharmaceutical design.

[48]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[49]  A. Arnsten Stress signalling pathways that impair prefrontal cortex structure and function , 2009, Nature Reviews Neuroscience.

[50]  G. Mengod,et al.  Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. , 2009, Cerebral cortex.

[51]  T. Robbins,et al.  Differential Contributions of Dopamine and Serotonin to Orbitofrontal Cortex Function in the Marmoset , 2008, Cerebral cortex.

[52]  Z. Khan,et al.  Quantification of D1 and D5 dopamine receptor localization in layers I, III, and V of Macaca mulatta prefrontal cortical area 9: Coexpression in dendritic spines and axon terminals , 2008, The Journal of comparative neurology.

[53]  R. Wurtz,et al.  Brain circuits for the internal monitoring of movements. , 2008, Annual review of neuroscience.

[54]  M. Millan,et al.  S33138 (N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1] benzopyrano[3,4-c]pyrrol-2(3H)-yl)-ethyl]phenyl-acetamide), a Preferential Dopamine D3 versus D2 Receptor Antagonist and Potential Antipsychotic Agent: III. Actions in Models of Therapeutic Activity and Induction of Side Effects , 2008, Journal of Pharmacology and Experimental Therapeutics.

[55]  M. D’Esposito Working memory. , 2008, Handbook of clinical neurology.

[56]  A. Nairn,et al.  Orbitofrontal Cortex and Cognitive‐Motivational Impairments in Psychostimulant Addiction , 2007, Annals of the New York Academy of Sciences.

[57]  T. Robbins,et al.  Differential regulation of fronto-executive function by the monoamines and acetylcholine. , 2007, Cerebral cortex.

[58]  J. Bourne,et al.  Do thin spines learn to be mushroom spines that remember? , 2007, Current Opinion in Neurobiology.

[59]  T. Robbins,et al.  Catechol O-Methyltransferase val158met Genotype Influences Frontoparietal Activity during Planning in Patients with Parkinson's Disease , 2007, The Journal of Neuroscience.

[60]  D. McCormick,et al.  α2A-Adrenoceptors Strengthen Working Memory Networks by Inhibiting cAMP-HCN Channel Signaling in Prefrontal Cortex , 2007, Cell.

[61]  Andreas Meyer-Lindenberg,et al.  Allelic Variation in RGS4 Impacts Functional and Structural Connectivity in the Human Brain , 2007, The Journal of Neuroscience.

[62]  Graham V. Williams,et al.  Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory , 2007, Nature Neuroscience.

[63]  L. Krimer,et al.  Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. , 2006, Cerebral cortex.

[64]  T. Robbins,et al.  Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. , 2006, Cerebral cortex.

[65]  R. Freedman,et al.  Schizophrenia and the alpha7 nicotinic acetylcholine receptor. , 2007, International review of neurobiology.

[66]  A. Kelley,et al.  Methylphenidate Preferentially Increases Catecholamine Neurotransmission within the Prefrontal Cortex at Low Doses that Enhance Cognitive Function , 2006, Biological Psychiatry.

[67]  P. Goldman-Rakic,et al.  Internalization of D2 dopamine receptors is clathrin‐dependent and select to dendro–axonic appositions in primate prefrontal cortex , 2006, The European journal of neuroscience.

[68]  C. Tamminga,et al.  Regional alterations in RGS4 protein in schizophrenia , 2006, Synapse.

[69]  M. D’Esposito,et al.  FUNCTIONAL MAGNETIC RESONANCE IMAGING STUDY OF THE FFECTS OF PERGOLIDE , A DOPAMINE RECEPTOR AGONIST , N COMPONENT PROCESSES OF WORKING MEMORY , 2006 .

[70]  Tommaso Scarabino,et al.  Additive Effects of Genetic Variation in Dopamine Regulating Genes on Working Memory Cortical Activity in Human Brain , 2006, The Journal of Neuroscience.

[71]  S. Haber,et al.  Prefrontal Cortical Projections to the Midbrain in Primates: Evidence for a Sparse Connection , 2006, Neuropsychopharmacology.

[72]  J. Kaas,et al.  Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. , 2006, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[73]  J. Seamans,et al.  Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons of primate dorsolateral prefrontal cortex. , 2005, Journal of neurophysiology.

[74]  T. Robbins,et al.  Neural systems of reinforcement for drug addiction: from actions to habits to compulsion , 2005, Nature Neuroscience.

[75]  L. Negyessy,et al.  Morphometric characterization of synapses in the primate prefrontal cortex formed by afferents from the mediodorsal thalamic nucleus , 2005, Experimental Brain Research.

[76]  P. Goldman-Rakic,et al.  Presynaptic D1 Dopamine Receptors in Primate Prefrontal Cortex: Target-Specific Expression in the Glutamatergic Synapse , 2005, The Journal of Neuroscience.

[77]  A. Arnsten,et al.  Neurobiology of Executive Functions: Catecholamine Influences on Prefrontal Cortical Functions , 2004, Biological Psychiatry.

[78]  P. Goldman-Rakic,et al.  Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys , 1994, Psychopharmacology.

[79]  M. Gill,et al.  The methionine allele of the COMT polymorphism impairs prefrontal cognition in children and adolescents with ADHD , 2005, Experimental Brain Research.

[80]  A. Dickinson,et al.  Prediction Error during Retrospective Revaluation of Causal Associations in Humans fMRI Evidence in Favor of an Associative Model of Learning , 2004, Neuron.

[81]  Antonieta Lavin,et al.  Mechanisms Underlying Differential D1 versus D2 Dopamine Receptor Regulation of Inhibition in Prefrontal Cortex , 2004, The Journal of Neuroscience.

[82]  P. Goldman-Rakic,et al.  Microdomains for Dopamine Volume Neurotransmission in Primate Prefrontal Cortex , 2004, The Journal of Neuroscience.

[83]  Bita Moghaddam,et al.  NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Michael Gill,et al.  Confirming RGS4 as a susceptibility gene for schizophrenia , 2004, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[85]  P. Goldman-Rakic,et al.  Selective D2 Receptor Actions on the Functional Circuitry of Working Memory , 2004, Science.

[86]  J. Hagan,et al.  Selective Antagonism at Dopamine D3 Receptors Enhances Monoaminergic and Cholinergic Neurotransmission in the Rat Anterior Cingulate Cortex , 2003, Neuropsychopharmacology.

[87]  C. Gonzalez-Islas,et al.  Dopamine Enhances EPSCs in Layer II–III Pyramidal Neurons in Rat Prefrontal Cortex , 2003, The Journal of Neuroscience.

[88]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[89]  P. Goldman-Rakic,et al.  Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex. , 2002, Journal of neurophysiology.

[90]  Gábor Tamás,et al.  Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites , 2002, Nature Neuroscience.

[91]  R. V. Van Heertum,et al.  Prefrontal Dopamine D1 Receptors and Working Memory in Schizophrenia , 2002, The Journal of Neuroscience.

[92]  J. Ford,et al.  Reduced communication between frontal and temporal lobes during talking in schizophrenia , 2002, Biological Psychiatry.

[93]  D. Lewis,et al.  Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia , 2001, Molecular Psychiatry.

[94]  A. Sampson,et al.  Dopamine transporter immunoreactivity in monkey cerebral cortex: Regional, laminar, and ultrastructural localization , 2001, The Journal of comparative neurology.

[95]  P. Goldman-Rakic,et al.  Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[96]  T. Sejnowski,et al.  Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[97]  S. Sealfon,et al.  Dopamine receptors: from structure to behavior , 2000, Trends in Neurosciences.

[98]  D. Lewis,et al.  Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. , 2000, Archives of general psychiatry.

[99]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[100]  A. Sampson,et al.  Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. , 1999, The American journal of psychiatry.

[101]  S. Haber,et al.  Immunocytochemical localization of the dopamine transporter in human brain , 1999, The Journal of comparative neurology.

[102]  B. Bunney,et al.  Opposite modulation of cortical N-methyl-d-aspartate receptor-mediated responses by low and high concentrations of dopamine , 1999, Neuroscience.

[103]  P S Goldman-Rakic,et al.  The “Psychic” Neuron of the Cerebral Cortex , 1999, Annals of the New York Academy of Sciences.

[104]  S. Sesack,et al.  Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures. , 1998, Cerebral cortex.

[105]  T. Sawaguchi Attenuation of delay-period activity of monkey prefrontal neurons by an alpha2-adrenergic antagonist during an oculomotor delayed-response task. , 1998, Journal of neurophysiology.

[106]  G. Rappold,et al.  Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter , 1998, Nature Neuroscience.

[107]  A. Arnsten The Biology of Being Frazzled , 1998, Science.

[108]  P S Goldman-Rakic,et al.  Widespread origin of the primate mesofrontal dopamine system. , 1998, Cerebral cortex.

[109]  A. C. Roberts,et al.  Perseveration and Strategy in a Novel Spatial Self-Ordered Sequencing Task for Nonhuman Primates: Effects of Excitotoxic Lesions and Dopamine Depletions of the Prefrontal Cortex , 1998, Journal of Cognitive Neuroscience.

[110]  P. Goldman-Rakic,et al.  Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. , 1998, Archives of general psychiatry.

[111]  P S Goldman-Rakic,et al.  Layer V neurons bear the majority of mRNAs encoding the five distinct dopamine receptor subtypes in the primate prefrontal cortex , 1998, Synapse.

[112]  W. Schultz,et al.  The phasic reward signal of primate dopamine neurons. , 1998, Advances in pharmacology.

[113]  P. Goldman-Rakic,et al.  Areal segregation of face-processing neurons in prefrontal cortex. , 1997, Science.

[114]  JaneR . Taylor,et al.  Supranormal Stimulation of D1 Dopamine Receptors in the Rodent Prefrontal Cortex Impairs Spatial Working Memory Performance , 1997, The Journal of Neuroscience.

[115]  A. Arnsten,et al.  Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. , 1997, The Journal of pharmacology and experimental therapeutics.

[116]  P. Goldman-Rakic,et al.  Down-regulation of the D1 and D5 dopamine receptors in the primate prefrontal cortex by chronic treatment with antipsychotic drugs. , 1997, The Journal of pharmacology and experimental therapeutics.

[117]  S. Haber,et al.  The primate substantia nigra and VTA: integrative circuitry and function. , 1997, Critical reviews in neurobiology.

[118]  A. Levey,et al.  The Dopamine Transporter Carboxyl-terminal Tail , 1996, The Journal of Biological Chemistry.

[119]  J. Krystal,et al.  Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[120]  P. Goldman-Rakic,et al.  Localization of dopamine D4 receptors in GABAergic neurons of the primate brain , 1996, Nature.

[121]  P S Goldman-Rakic,et al.  Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[122]  P. Goldman-Rakic,et al.  Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[123]  P. Goldman-Rakic,et al.  Modulation of memory fields by dopamine Dl receptors in prefrontal cortex , 1995, Nature.

[124]  P. Goldman-Rakic,et al.  Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey , 1995, The Journal of comparative neurology.

[125]  D. Rosenberg,et al.  Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: A tyrosine hydroxylase immunohistochemical analysis , 1995, The Journal of comparative neurology.

[126]  P. Goldman-Rakic,et al.  Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: the effects of quinpirole on memory and motor performance in monkeys , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[127]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[128]  T. Preuss Do Rats Have Prefrontal Cortex? The Rose-Woolsey-Akert Program Reconsidered , 1995, Journal of Cognitive Neuroscience.

[129]  D. Rosenberg,et al.  Changes in the dopaminergic innervation of monkey prefrontal cortex during late postnatal development: A tyrosine hydroxylase immunohistochemical study , 1994, Biological Psychiatry.

[130]  P S Goldman-Rakic,et al.  D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[131]  A C Roberts,et al.  6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  P. Goldman-Rakic,et al.  The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. , 1994, Journal of neurophysiology.

[133]  P. Goldman-Rakic,et al.  Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. , 1993, Cerebral cortex.

[134]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[135]  C. Marsden,et al.  Fronto-striatal cognitive deficits at different stages of Parkinson's disease. , 1992, Brain : a journal of neurology.

[136]  P. Goldman-Rakic,et al.  Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390 , 1991, Neuroscience.

[137]  P. Goldman-Rakic,et al.  Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. , 1991, Journal of neurophysiology.

[138]  Susan R. George,et al.  Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1 , 1991, Nature.

[139]  Philip Seeman,et al.  Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine , 1991, Nature.

[140]  P. Goldman-Rakic,et al.  D1 dopamine receptors in prefrontal cortex: involvement in working memory , 1991, Science.

[141]  B. Berger,et al.  Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates , 1991, Trends in Neurosciences.

[142]  A. Gratton,et al.  Electrophysiological effects of selective D1 and D2 dopamine receptor agonists in the medial prefrontal cortex of young and aged Fischer 344 rats. , 1990, The Journal of pharmacology and experimental therapeutics.

[143]  P. Goldman-Rakic,et al.  Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[144]  Ariel Y. Deutch,et al.  Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress , 1990, Brain Research.

[145]  R. Roth,et al.  The determinants of stress-induced activation of the prefrontal cortical dopamine system. , 1990, Progress in brain research.

[146]  J. Lieberman,et al.  Dopaminergic mechanisms in idiopathic and drug-induced psychoses. , 1990, Schizophrenia bulletin.

[147]  P. Goldman-Rakic,et al.  Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[148]  P S Goldman-Rakic,et al.  Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[149]  D. Price,et al.  Age-related changes in multiple neurotransmitter systems in the monkey brain , 1989, Neurobiology of Aging.

[150]  R. Roth,et al.  Stress and the Mesocorticolimbic Dopamine Systems a , 1988, Annals of the New York Academy of Sciences.

[151]  C. Marsden,et al.  'Frontal' cognitive function in patients with Parkinson's disease 'on' and 'off' levodopa. , 1988, Brain : a journal of neurology.

[152]  L. Descarries,et al.  Regional and laminar density of the dopamine innervation in adult rat cerebral cortex , 1987, Neuroscience.

[153]  S. Foote,et al.  The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[154]  P. Seeman,et al.  Dopamine receptors and the dopamine hypothesis of schizophrenia , 1987, Synapse.

[155]  P. Goldman-Rakic,et al.  Region‐specific distribution of catecholamine afferents in primate cerebral cortex: A fluorescence histochemical analysis , 1984, The Journal of comparative neurology.

[156]  P. Goldman-Rakic,et al.  Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys , 1981, Neuroscience.

[157]  H. E. Rosvold,et al.  Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. , 1979, Science.

[158]  A. Crane,et al.  Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates , 1979, Brain Research.