The bacterial pangenome as a new tool for analysing pathogenic bacteria

The bacterial pangenome was introduced in 2005 and, in recent years, has been the subject of many studies. Thanks to progress in next-generation sequencing methods, the pangenome can be divided into two parts, the core (common to the studied strains) and the accessory genome, offering a large panel of uses. In this review, we have presented the analysis methods, the pangenome composition and its application as a study of lifestyle. We have also shown that the pangenome may be used as a new tool for redefining the pathogenic species. We applied this to the Escherichia coli and Shigella species, which have been a subject of controversy regarding their taxonomic and pathogenic position.

[1]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[2]  D. Gevers,et al.  Re-evaluating prokaryotic species , 2005, Nature Reviews Microbiology.

[3]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[4]  R. Welch The Genus Escherichia , 2006 .

[5]  Zhi-ping Zhang,et al.  Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system. , 2013, Biosensors & bioelectronics.

[6]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[7]  Claudine Médigue,et al.  Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence , 2010, BMC Genomics.

[8]  K. Konstantinidis,et al.  The bacterial species definition in the genomic era , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  Derrick E. Fouts,et al.  PanOCT: automated clustering of orthologs using conserved gene neighborhood for pan-genomic analysis of bacterial strains and closely related species , 2012, Nucleic acids research.

[10]  Feng Chen,et al.  OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups , 2005, Nucleic Acids Res..

[11]  J. Stenos,et al.  Potential serodiagnostic markers for Q fever identified in Coxiella burnetii by immunoproteomic and protein microarray approaches , 2012, BMC Microbiology.

[12]  D. Raoult,et al.  A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. , 2014, International journal of systematic and evolutionary microbiology.

[13]  S. Salzberg,et al.  Probing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification , 2010, BMC Genomics.

[14]  Jingfa Xiao,et al.  Comparative genomic analysis of Streptococcus suis reveals significant genomic diversity among different serotypes , 2011, BMC Genomics.

[15]  Trygve Almøy,et al.  Microbial comparative pan-genomics using binomial mixture models , 2009, BMC Genomics.

[16]  R. Joshi,et al.  Resistome analysis of Mycobacterium tuberculosis: Identification of aminoglycoside 2'-Nacetyltransferase (AAC) as co-target for drug desigining , 2013, Bioinformation.

[17]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[18]  B. Duffy,et al.  The Culturable Soil Antibiotic Resistome: A Community of Multi-Drug Resistant Bacteria , 2013, PloS one.

[19]  Douwe Molenaar,et al.  PanCGH: a genotype-calling algorithm for pangenome CGH data , 2009, Bioinform..

[20]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[21]  Jaideep P. Sundaram,et al.  Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Shengzhong Feng,et al.  A fast and flexible approach to oligonucleotide probe design for genomes and gene families , 2007, Bioinform..

[23]  Maxime Durot,et al.  Core and Panmetabolism in Escherichia coli , 2011, Journal of bacteriology.

[24]  Adam M. Phillippy,et al.  Efficient oligonucleotide probe selection for pan-genomic tiling arrays , 2009, BMC Bioinformatics.

[25]  Andrés Moya,et al.  Legionella pneumophila pangenome reveals strain-specific virulence factors , 2010, BMC Genomics.

[26]  Natalia N. Ivanova,et al.  Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti , 2011, BMC Genomics.

[27]  A. Goesmann,et al.  Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome , 2013, BMC Genomics.

[28]  Ruifu Yang,et al.  Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis , 2012, Proceedings of the National Academy of Sciences.

[29]  Tom Coenye,et al.  Opinion: Re-evaluating prokaryotic species. , 2005, Nature reviews. Microbiology.

[30]  Roger E Bumgarner,et al.  Identification of the Pangenome and Its Components in 14 Distinct Aggregatibacter actinomycetemcomitans Strains by Comparative Genomic Analysis , 2011, PloS one.

[31]  W. Melchers,et al.  Genotypic Diversity of Coxiella burnetii in the 2007-2010 Q Fever Outbreak Episodes in The Netherlands , 2011, Journal of Clinical Microbiology.

[32]  D. Raoult,et al.  Defining Pathogenic Bacterial Species in the Genomic Era , 2011, Front. Microbio..

[33]  Jun Yu,et al.  PGAP: pan-genomes analysis pipeline , 2011, Bioinform..

[34]  J. Weissenbach,et al.  Mechanisms of Evolution in Rickettsia conorii and R. prowazekii , 2001, Science.

[35]  D. Ussery,et al.  Mycobacterial species as case-study of comparative genome analysis. , 2011, Cellular and molecular biology.

[36]  M. Wiedmann,et al.  Listeria monocytogenes σB Has a Small Core Regulon and a Conserved Role in Virulence but Makes Differential Contributions to Stress Tolerance across a Diverse Collection of Strains , 2010, Applied and Environmental Microbiology.

[37]  B. White,et al.  Analysis of the Pan Genome of Campylobacter jejuni Isolates Recovered from Poultry by Pulsed-Field Gel Electrophoresis, Multilocus Sequence Typing (MLST), and Repetitive Sequence Polymerase Chain Reaction (rep-PCR) Reveals Different Discriminatory Capabilities , 2009, Microbial Ecology.

[38]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[39]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[40]  Y. Hauck,et al.  Molecular characterization of Coxiella burnetii isolates by infrequent restriction site-PCR and MLVA typing , 2006, BMC Microbiology.

[41]  Paulo A. S. Nuin,et al.  Design and Verification of a Pangenome Microarray Oligonucleotide Probe Set for Dehalococcoides spp , 2011, Applied and Environmental Microbiology.

[42]  Lutz Wiehlmann,et al.  Pseudomonas aeruginosa Genomic Structure and Diversity , 2011, Front. Microbio..

[43]  Alex Bateman,et al.  The InterPro database, an integrated documentation resource for protein families, domains and functional sites , 2001, Nucleic Acids Res..

[44]  Jingfa Xiao,et al.  Pan-Genomic Analysis Provides Insights into the Genomic Variation and Evolution of Salmonella Paratyphi A , 2012, PloS one.

[45]  Mihai Pop,et al.  ARDB—Antibiotic Resistance Genes Database , 2008, Nucleic Acids Res..

[46]  D. Raoult,et al.  Connection of toxin-antitoxin modules to inoculation eschar and arthropod vertical transmission in Rickettsiales. , 2013, Comparative immunology, microbiology and infectious diseases.

[47]  Justin S. Hogg,et al.  Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains , 2007, Genome Biology.

[48]  R. Dagan,et al.  Genotyping of invasive Kingella kingae isolates reveals predominant clones and association with specific clinical syndromes. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[49]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[50]  Yongxiang Zhang,et al.  Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions , 2010, BMC Bioinformatics.

[51]  D. Raoult,et al.  Massive comparative genomic analysis reveals convergent evolution of specialized bacteria , 2009, Biology Direct.

[52]  Ibtissem Grissa,et al.  CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats , 2007, Nucleic Acids Res..

[53]  David S. Wishart,et al.  PHAST: A Fast Phage Search Tool , 2011, Nucleic Acids Res..

[54]  P. Woo,et al.  Novel Pan-Genomic Analysis Approach in Target Selection for Multiplex PCR Identification and Detection of Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia cepacia Complex Species: a Proof-of-Concept Study , 2010, Journal of Clinical Microbiology.

[55]  D. Falush,et al.  Progressive genome-wide introgression in agricultural Campylobacter coli , 2012, Molecular ecology.

[56]  Patricia Siguier,et al.  ISfinder: the reference centre for bacterial insertion sequences , 2005, Nucleic Acids Res..

[57]  R. Brunham,et al.  Unity in variety--the pan-genome of the Chlamydiae. , 2011, Molecular biology and evolution.

[58]  T. H. Smits,et al.  Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core , 2013, PloS one.

[59]  D. Raoult,et al.  Gene gain and loss events in Rickettsia and Orientia species , 2011, Biology Direct.

[60]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[61]  D. Ussery,et al.  The genus burkholderia: analysis of 56 genomic sequences. , 2009, Genome dynamics.

[62]  A. Maurelli,et al.  Antivirulence Genes: Insights into Pathogen Evolution through Gene Loss , 2012, Infection and Immunity.

[63]  Robert C. Edgar,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[64]  F. Corona,et al.  The intrinsic resistome of bacterial pathogens , 2013, Front. Microbiol..

[65]  C. Robert,et al.  The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new "killer bugs" are created because of a sympatric lifestyle. , 2013, Molecular biology and evolution.

[66]  M. Iacono,et al.  The genomics of Acinetobacter baumannii: Insights into genome plasticity, antimicrobial resistance and pathogenicity , 2011, IUBMB life.

[67]  Philippe Horvath,et al.  Comparison of the Complete Genome Sequences of Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04 , 2009, Journal of bacteriology.

[68]  Didier Raoult,et al.  Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors. , 2013, Briefings in functional genomics.

[69]  D. Raoult,et al.  Comparative Genomics Evidence That Only Protein Toxins are Tagging Bad Bugs , 2011, Front. Cell. Inf. Microbio..

[70]  Eugene W. Myers,et al.  Design of a compartmentalized shotgun assembler for the human genome , 2001, ISMB.

[71]  James H. Bullard,et al.  Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. , 2011, The New England journal of medicine.

[72]  P. Ortet,et al.  P2RP: a web-based framework for the identification and analysis of regulatory proteins in prokaryotic genomes , 2013, BMC Genomics.

[73]  Andreas Tauch,et al.  The Pan-Genome of the Animal Pathogen Corynebacterium pseudotuberculosis Reveals Differences in Genome Plasticity between the Biovar ovis and equi Strains , 2013, PloS one.

[74]  David R. Riley,et al.  Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species , 2010, Genome Biology.

[75]  N. Perna,et al.  Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation , 2012, BMC Genomics.

[76]  H. Tettelin,et al.  The microbial pan-genome. , 2005, Current opinion in genetics & development.

[77]  Richard J. Giannone,et al.  Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic Deconstruction of Plant Biomass , 2012, Journal of bacteriology.

[78]  Rene S. Hendriksen,et al.  The Salmonella enterica Pan-genome , 2011, Microbial Ecology.

[79]  J. T. Staley Universal species concept: pipe dream or a step toward unifying biology? , 2009, Journal of Industrial Microbiology & Biotechnology.

[80]  L. Ponnala,et al.  Analysis of Ultra Low Genome Conservation in Clostridium difficile , 2010, PloS one.

[81]  David R. Riley,et al.  Comparative genomics of the genus Bifidobacterium. , 2010, Microbiology.

[82]  Christian Kraft,et al.  Gain and Loss of Multiple Genes During the Evolution of Helicobacter pylori , 2005, PLoS genetics.

[83]  Jane M. McCarthy,et al.  Comparative analysis of the Oenococcus oeni pan genome reveals genetic diversity in industrially-relevant pathways , 2012, BMC Genomics.

[84]  Garth D Ehrlich,et al.  Comparative supragenomic analyses among the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae Using a modification of the finite supragenome model , 2011, BMC Genomics.

[85]  David R. Riley,et al.  Comparative genomics: the bacterial pan-genome. , 2008, Current opinion in microbiology.

[86]  G. Firrao,et al.  A Genomic Redefinition of Pseudomonas avellanae species , 2013, PloS one.

[87]  Bradd J. Haley,et al.  Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae , 2009, Proceedings of the National Academy of Sciences.

[88]  G. Smith,et al.  A pilot study of rapid whole-genome sequencing for the investigation of a Legionella outbreak , 2013, BMJ Open.

[89]  F. V. van Zijderveld,et al.  Molecular Epidemiology of Coxiella burnetii from Ruminants in Q Fever Outbreak, the Netherlands , 2011, Emerging infectious diseases.

[90]  Bin Li,et al.  Comparative Genomics of Mycoplasma: Analysis of Conserved Essential Genes and Diversity of the Pan-Genome , 2012, PloS one.

[91]  M. Wiedmann,et al.  Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss , 2010, BMC Genomics.

[92]  D. Raoult,et al.  Genomes of the Most Dangerous Epidemic Bacteria Have a Virulence Repertoire Characterized by Fewer Genes but More Toxin-Antitoxin Modules , 2011, PloS one.

[93]  S. Gill,et al.  Development of pooled suppression subtractive hybridization to analyze the pangenome of Staphylococcus aureus. , 2010, Journal of microbiological methods.

[94]  Sacha A. F. T. van Hijum,et al.  PanCGHweb: a web tool for genotype calling in pangenome CGH data , 2010, Bioinform..

[95]  Michael J. Stanhope,et al.  Evolutionary Dynamics of Complete Campylobacter Pan-Genomes and the Bacterial Species Concept , 2010, Genome biology and evolution.

[96]  David R. Riley,et al.  Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island , 2010, BMC Genomics.

[97]  Michael Otto,et al.  Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates , 2012, Genome Biology.

[98]  P. Gajer,et al.  The Pangenome Structure of Escherichia coli: Comparative Genomic Analysis of E. coli Commensal and Pathogenic Isolates , 2008, Journal of bacteriology.

[99]  J. Blom,et al.  Pangenomic Study of Corynebacterium diphtheriae That Provides Insights into the Genomic Diversity of Pathogenic Isolates from Cases of Classical Diphtheria, Endocarditis, and Pneumonia , 2012, Journal of bacteriology.

[100]  W. Martin,et al.  The tree of one percent , 2006, Genome Biology.

[101]  D. Raoult,et al.  Genomotyping of Coxiella burnetii Using Microarrays Reveals a Conserved Genomotype for Hard Tick Isolates , 2011, PloS one.

[102]  M. Stanhope,et al.  Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition , 2007, Genome Biology.

[103]  W. Doolittle,et al.  Genomics and the bacterial species problem , 2006, Genome Biology.

[104]  Georgios S. Vernikos,et al.  Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens , 2009, Genome Biology.

[105]  D. Raoult,et al.  Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. , 2010, FEMS microbiology reviews.

[106]  A. T. Vasconcelos,et al.  Genomic taxonomy of vibrios , 2009, BMC Evolutionary Biology.

[107]  D. Raoult,et al.  Review of microarray studies for host-intracellular pathogen interactions. , 2010, Journal of microbiological methods.

[108]  Huanchun Chen,et al.  Comparative Genomic Characterization of Actinobacillus pleuropneumoniae , 2010, Journal of bacteriology.

[109]  Radhakrishnan Mahadevan,et al.  Characterizing the Metabolism of Dehalococcoides with a Constraint-Based Model , 2010, PLoS Comput. Biol..

[110]  C. Robert,et al.  Insight into cross-talk between intra-amoebal pathogens , 2011, BMC Genomics.

[111]  F. Rodríguez-Valera,et al.  The bacterial pan-genome:a new paradigm in microbiology. , 2010, International microbiology : the official journal of the Spanish Society for Microbiology.

[112]  Jacques Ravel,et al.  Genome Sequence of the Deep-Rooted Yersinia pestis Strain Angola Reveals New Insights into the Evolution and Pangenome of the Plague Bacterium , 2010, Journal of bacteriology.