Hypernetted Chain Calculations for Multi‐Component and NonEquilibrium Plasmas

We solve the Ornstein‐Zernike equation within the hypernetted chain approximation for dense multi‐component plasmas using effective pair potentials. The method is used to study structural properties of plasmas, for instance in order to explain and predict X‐ray Thomson scattering spectra. Corresponding experiments are performed at free electron lasers such as FLASH Hamburg and LCLS Stanford, or at facilities using energetic optical lasers such as Omega in Rochester and Janus in Livermore. Results for pair distribution functions and static structure factors for dense hydrogen, beryllium, carbon and carbonhydride plasmas are presented. Furthermore, calculations for non‐equilibrium two‐temperature plasmas are performed as well, which are relevant for laserplasma interaction and relaxation phenomena on short time scales. We propose a consistent treatment for the electron‐ion coupling term which leads to a more realistic description of correlation effects. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  I. R. Mcdonald,et al.  Microscopic simulation of a strongly coupled hydrogen plasma , 1981 .

[2]  T. Bornath,et al.  Energy relaxation in dense, strongly coupled two-temperature plasmas. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  G. Kelbg Theorie des Quanten‐Plasmas , 1963 .

[4]  Junzo Chihara,et al.  Interaction of photons with plasmas and liquid metals - photoabsorption and scattering , 1999, cond-mat/9909372.

[5]  D. Gericke,et al.  Structure of strongly coupled multicomponent plasmas. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  J. Liebert,et al.  White dwarf stars with carbon atmospheres , 2007, Nature.

[7]  W. Nellis,et al.  Chemical processes in the deep interior of Uranus. , 2011, Nature communications.

[8]  E. Fick,et al.  Quantenstatistische Thermodynamik mit mehreren Temperaturen hei nichtzerlegharer Beobachtungsebene , 1967 .

[9]  J. M. J. van Leeuwen,et al.  New method for the calculation of the pair correlation function. I , 1959 .

[10]  Thomas A. Haill,et al.  Aluminum equation of state validation and verification for the ALEGRA HEDP simulation code. , 2006 .

[11]  O. Landen,et al.  Demonstration of spectrally resolved x-ray scattering in dense plasmas. , 2003, Physical review letters.

[12]  Andrea Kritcher,et al.  X-ray Radiography and Scattering Diagnosis of Dense Shock-Compressed Matter , 2010 .

[13]  J. Chihara Difference in X-ray scattering between metallic and non-metallic liquids due to conduction electrons , 1987 .

[14]  C. Deutsch,et al.  Classical modelization of symmetry effects in the dense high-temperature electron gas , 1978 .

[15]  G. Gregori,et al.  X-ray scattering as a probe for warm dense mixtures and high-pressure miscibility , 2010, 1005.3996.

[16]  S. Glenzer,et al.  Static ion structure factor for dense plasmas: Semi-classical and ab initio calculations , 2010 .

[17]  A. R. Oganov,et al.  Boron: a hunt for superhard polymorphs , 2009 .

[18]  J. Kress,et al.  The quantum hypernetted chain model of warm dense matter , 2012 .

[19]  J. D. Moody,et al.  Measurement of carbon ionization balance in high-temperature plasma mixtures by temporally resolved X-ray scattering , 2006 .

[20]  T. Morita Equation of State of High Temperature Plasma , 1959 .

[21]  I. R. Mcdonald,et al.  Thermal relaxation in a strongly coupled two-temperature plasma , 1983 .

[22]  S. Glenzer,et al.  X-ray Thomson scattering in high energy density plasmas , 2009 .

[23]  R. Redmer,et al.  COMPTRA04 – a Program Package to Calculate Composition and Transport Coefficients in Dense Plasmas , 2005 .

[24]  O. Landen,et al.  Observations of plasmons in warm dense matter. , 2006, Physical review letters.

[25]  W. Kraeft,et al.  Quantum statistics of nonideal plasmas , 2005 .

[26]  Vogel,et al.  Correlations in a two-temperature plasma. , 1989, Physical review. A, General physics.

[27]  Chihara Dharma-wardana-Perrot theory and the quantal hypernetted-chain equation for strongly coupled plasmas. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[28]  I. R. Mcdonald,et al.  Simple Liquid Metals , 1990 .

[29]  C. Deutsch Nodal expansion in a real matter plasma , 1977 .

[30]  D. Gericke,et al.  Ion structure in warm dense matter: benchmarking solutions of hypernetted-chain equations by first-principle simulations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  O. Landen,et al.  Ultrafast Kα x-ray Thomson scattering from shock compressed lithium hydridea) , 2009 .

[32]  Edward I. Moses,et al.  The National Ignition Facility: Ushering in a new age for high energy density science , 2009 .

[33]  R. Redmer,et al.  Interior structure models of GJ 436b , 2010, 1002.4447.

[34]  H. J. Lee,et al.  X-ray Thomson-scattering measurements of density and temperature in shock-compressed beryllium. , 2008, Physical review letters.

[35]  H. J. Lee,et al.  Dynamic structure factor in warm dense beryllium , 2012 .

[36]  I. R. Mcdonald,et al.  Microscopic simulation of a hydrogen plasma , 1978 .