Rings in which every left zero-divisor is also a right zero-divisor and conversely

A ring [Formula: see text] is called eversible if every left zero-divisor in [Formula: see text] is also a right zero-divisor and conversely. This class of rings is a natural generalization of reversible rings. It is shown that every eversible ring is directly finite, and a von Neumann regular ring is directly finite if and only if it is eversible. We give several examples of some important classes of rings (such as local, abelian) that are not eversible. We prove that [Formula: see text] is eversible if and only if its upper triangular matrix ring [Formula: see text] is eversible, and if [Formula: see text] is eversible then [Formula: see text] is eversible.

[1]  A. Harmanci,et al.  Reversibility of Rings with Respect to the Jacobson Radical , 2017 .

[2]  Katharina Weiss,et al.  Lectures On Modules And Rings , 2016 .

[3]  M. Kosan The p.p. property of trivial extensions , 2015 .

[4]  R. P. Tucci,et al.  Zero Divisor Graphs of Upper Triangular Matrix Rings , 2013 .

[5]  Jianlong Chen,et al.  A Class of Quasipolar Rings , 2012 .

[6]  Pace P. Nielsen,et al.  McCoy rings and zero-divisors , 2008 .

[7]  Tsit Yuen Lam,et al.  Exercises in Modules and Rings , 2006 .

[8]  Pace P. Nielsen Semi-commutativity and the McCoy condition , 2006 .

[9]  T. Lam,et al.  Rings with internal cancellation , 2005 .

[10]  Yang Lee,et al.  Extensions of reversible rings , 2003 .

[11]  G. Elek,et al.  Sofic groups and direct finiteness , 2003, math/0305440.

[12]  Francesc Perera,et al.  Stable Finiteness of Group Rings in Arbitrary Characteristic , 2002 .

[13]  A. Haghany HOPFICITY AND CO-HOPFICITY FOR MORITA CONTEXTS , 1999 .

[14]  D. D. Anderson,et al.  Semigroups and rings whose zero products commute , 1999 .

[15]  A. Tuganbaev Semidistributive Modules and Rings , 1998 .

[16]  Tsit Yuen Lam,et al.  A first course in noncommutative rings , 2002 .

[17]  M. Marianne Rings of quotients of generalized matrix rings , 1987 .

[18]  J. Lawrence,et al.  Left and right zero divisors in group algebras , 1976, Bulletin of the Australian Mathematical Society.

[19]  J. Shepherdson Inverses and Zero Divisors in Matrix Rings , 1951 .