Given two regular graphs <inline-formula><tex-math notation="LaTeX">$G$</tex-math><alternatives><mml:math><mml:mi>G</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq1-2931904.gif"/></alternatives></inline-formula> and <inline-formula><tex-math notation="LaTeX">$H$</tex-math><alternatives><mml:math><mml:mi>H</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq2-2931904.gif"/></alternatives></inline-formula> such that the vertex degree of <inline-formula><tex-math notation="LaTeX">$G$</tex-math><alternatives><mml:math><mml:mi>G</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq3-2931904.gif"/></alternatives></inline-formula> is equal to the number of vertices in <inline-formula><tex-math notation="LaTeX">$H$</tex-math><alternatives><mml:math><mml:mi>H</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq4-2931904.gif"/></alternatives></inline-formula>, the <italic>compound graph</italic> <inline-formula><tex-math notation="LaTeX">$G(H)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>G</mml:mi><mml:mo>(</mml:mo><mml:mi>H</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq5-2931904.gif"/></alternatives></inline-formula> is constructed by replacing each vertex of <inline-formula><tex-math notation="LaTeX">$G$</tex-math><alternatives><mml:math><mml:mi>G</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq6-2931904.gif"/></alternatives></inline-formula> by a copy of <inline-formula><tex-math notation="LaTeX">$H$</tex-math><alternatives><mml:math><mml:mi>H</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq7-2931904.gif"/></alternatives></inline-formula> and replacing each edge of <inline-formula><tex-math notation="LaTeX">$G$</tex-math><alternatives><mml:math><mml:mi>G</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq8-2931904.gif"/></alternatives></inline-formula> by an additional edge connecting random vertices in two corresponding copies of <inline-formula><tex-math notation="LaTeX">$H$</tex-math><alternatives><mml:math><mml:mi>H</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq9-2931904.gif"/></alternatives></inline-formula>, respectively, under the constraint that each vertex in <inline-formula><tex-math notation="LaTeX">$G(H)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>G</mml:mi><mml:mo>(</mml:mo><mml:mi>H</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq10-2931904.gif"/></alternatives></inline-formula> is incident with only one additional edge, exactly. <inline-formula><tex-math notation="LaTeX">$L$</tex-math><alternatives><mml:math><mml:mi>L</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq11-2931904.gif"/></alternatives></inline-formula>-<inline-formula><tex-math notation="LaTeX">$HSDC_m(m)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>H</mml:mi><mml:mi>S</mml:mi><mml:mi>D</mml:mi><mml:msub><mml:mi>C</mml:mi><mml:mi>m</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>m</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq12-2931904.gif"/></alternatives></inline-formula> is a compound graph <inline-formula><tex-math notation="LaTeX">$G(H)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>G</mml:mi><mml:mo>(</mml:mo><mml:mi>H</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq13-2931904.gif"/></alternatives></inline-formula>, where <inline-formula><tex-math notation="LaTeX">$G$</tex-math><alternatives><mml:math><mml:mi>G</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq14-2931904.gif"/></alternatives></inline-formula> is a hypercube <inline-formula><tex-math notation="LaTeX">$Q_m$</tex-math><alternatives><mml:math><mml:msub><mml:mi>Q</mml:mi><mml:mi>m</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="hao-ieq15-2931904.gif"/></alternatives></inline-formula> and <inline-formula><tex-math notation="LaTeX">$H$</tex-math><alternatives><mml:math><mml:mi>H</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq16-2931904.gif"/></alternatives></inline-formula> is a complete graph <inline-formula><tex-math notation="LaTeX">$K_m$</tex-math><alternatives><mml:math><mml:msub><mml:mi>K</mml:mi><mml:mi>m</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="hao-ieq17-2931904.gif"/></alternatives></inline-formula>, which is defined by focusing on the connected relation between servers in the novel data center network <inline-formula><tex-math notation="LaTeX">$HSDC_m(m)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>H</mml:mi><mml:mi>S</mml:mi><mml:mi>D</mml:mi><mml:msub><mml:mi>C</mml:mi><mml:mi>m</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>m</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq18-2931904.gif"/></alternatives></inline-formula> proposed in [30]. A set of <inline-formula><tex-math notation="LaTeX">$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq19-2931904.gif"/></alternatives></inline-formula> spanning trees in a graph <inline-formula><tex-math notation="LaTeX">$G$</tex-math><alternatives><mml:math><mml:mi>G</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq20-2931904.gif"/></alternatives></inline-formula> are called <italic>completely independent spanning trees</italic> (CISTs for short) if the paths joining every pair of vertices <inline-formula><tex-math notation="LaTeX">$x$</tex-math><alternatives><mml:math><mml:mi>x</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq21-2931904.gif"/></alternatives></inline-formula> and <inline-formula><tex-math notation="LaTeX">$y$</tex-math><alternatives><mml:math><mml:mi>y</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq22-2931904.gif"/></alternatives></inline-formula> in any two trees have neither vertex nor edge in common, except for <inline-formula><tex-math notation="LaTeX">$x$</tex-math><alternatives><mml:math><mml:mi>x</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq23-2931904.gif"/></alternatives></inline-formula> and <inline-formula><tex-math notation="LaTeX">$y$</tex-math><alternatives><mml:math><mml:mi>y</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq24-2931904.gif"/></alternatives></inline-formula>. In this paper, we give a sufficient condition for the existence of <inline-formula><tex-math notation="LaTeX">$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq25-2931904.gif"/></alternatives></inline-formula> CISTs in a kind of compound graph. Furthermore, a specific construction algorithm is provided. As corollaries of the main results, the existences of two CISTs for <inline-formula><tex-math notation="LaTeX">$m\geq 4$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>m</mml:mi><mml:mo>≥</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq26-2931904.gif"/></alternatives></inline-formula>; three CISTs for <inline-formula><tex-math notation="LaTeX">$m\geq 8$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>m</mml:mi><mml:mo>≥</mml:mo><mml:mn>8</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq27-2931904.gif"/></alternatives></inline-formula> and four CISTs for <inline-formula><tex-math notation="LaTeX">$m\geq 10$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>m</mml:mi><mml:mo>≥</mml:mo><mml:mn>10</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq28-2931904.gif"/></alternatives></inline-formula> in <inline-formula><tex-math notation="LaTeX">$L$</tex-math><alternatives><mml:math><mml:mi>L</mml:mi></mml:math><inline-graphic xlink:href="hao-ieq29-2931904.gif"/></alternatives></inline-formula>-<inline-formula><tex-math notation="LaTeX">$HSDC_m(m)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>H</mml:mi><mml:mi>S</mml:mi><mml:mi>D</mml:mi><mml:msub><mml:mi>C</mml:mi><mml:mi>m</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>m</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="hao-ieq30-2931904.gif"/></alternatives></inline-formula> are gotten directly.
[1]
Toru Hasunuma,et al.
Completely independent spanning trees in the underlying graph of a line digraph
,
2000,
Discret. Math..
[2]
Kung-Jui Pai,et al.
Dual-CISTs: Configuring a Protection Routing on Some Cayley Networks
,
2019,
IEEE/ACM Transactions on Networking.
[3]
Yoshihide Igarashi,et al.
Reliable broadcasting and secure distributing in channel networks
,
1997,
Proceedings of the 1997 International Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN'97).
[4]
Haitao Wu,et al.
BCube: a high performance, server-centric network architecture for modular data centers
,
2009,
SIGCOMM '09.
[5]
Jou-Ming Chang,et al.
Completely Independent Spanning Trees on Complete Graphs, Complete Bipartite Graphs and Complete Tripartite Graphs
,
2013
.
[6]
Yota Otachi,et al.
Completely Independent Spanning Trees in (Partial) k-Trees
,
2015,
Discuss. Math. Graph Theory.
[7]
Toru Hasunuma,et al.
Completely independent spanning trees in torus networks
,
2012,
Networks.
[8]
Jianxi Fan,et al.
Constructing completely independent spanning trees in crossed cubes
,
2017,
Discret. Appl. Math..
[9]
Alon Itai,et al.
The Multi-Tree Approach to Reliability in Distributed Networks
,
1988,
Inf. Comput..
[10]
Amin Vahdat,et al.
A scalable, commodity data center network architecture
,
2008,
SIGCOMM '08.
[11]
Toru Hasunuma,et al.
Completely Independent Spanning Trees in Maximal Planar Graphs
,
2002,
WG.
[12]
Qinghai Liu,et al.
Degree condition for completely independent spanning trees
,
2016,
Inf. Process. Lett..
[13]
Hung-Yi Chang,et al.
A Note on the Degree Condition of Completely Independent Spanning Trees
,
2015,
IEICE Trans. Fundam. Electron. Commun. Comput. Sci..
[14]
Olivier Togni,et al.
Completely independent spanning trees in some regular graphs
,
2014,
Discret. Appl. Math..
[15]
Myung M. Bae,et al.
Edge Disjoint Hamiltonian Cycles in k-Ary n-Cubes and Hypercubes
,
2003,
IEEE Trans. Computers.
[16]
János Tapolcai,et al.
Sufficient conditions for protection routing in IP networks
,
2013,
Optim. Lett..
[17]
Haitao Wu,et al.
Scalable and Cost-Effective Interconnection of Data-Center Servers Using Dual Server Ports
,
2011,
IEEE/ACM Transactions on Networking.
[18]
Toru Araki,et al.
Dirac's Condition for Completely Independent Spanning Trees
,
2014,
J. Graph Theory.
[19]
Lei Shi,et al.
Dcell: a scalable and fault-tolerant network structure for data centers
,
2008,
SIGCOMM '08.
[20]
Cheng-Kuan Lin,et al.
Toward the completely independent spanning trees problem on BCube
,
2017,
2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN).
[21]
Yu-Chee Tseng,et al.
Efficient Broadcasting in Wormhole-Routed Multicomputers: A Network-Partitioning Approach
,
1999,
IEEE Trans. Parallel Distributed Syst..
[22]
Sun-Yuan Hsieh,et al.
Constructing edge-disjoint spanning trees in locally twisted cubes
,
2009,
Theor. Comput. Sci..
[23]
Toru Hasunuma,et al.
Minimum Degree Conditions and Optimal Graphs for Completely Independent Spanning Trees
,
2015,
IWOCA.
[24]
Kung-Jui Pai,et al.
Constructing two completely independent spanning trees in hypercube-variant networks
,
2016,
Theor. Comput. Sci..
[25]
Kung-Jui Pai,et al.
Completely Independent Spanning Trees on Some Interconnection Networks
,
2014,
IEICE Trans. Inf. Syst..
[26]
Qinghai Liu,et al.
Ore's condition for completely independent spanning trees
,
2014,
Discret. Appl. Math..
[27]
Kung-Jui Pai,et al.
Parallel Construction of Independent Spanning Trees on Enhanced Hypercubes
,
2015,
IEEE Transactions on Parallel and Distributed Systems.